Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:In high-energy physics, particles produced in collision events decay in a format of a hierarchical tree structure, where only the final decay products can be observed using detectors. However, the large combinatorial space of possible tree structures makes it challenging to recover the actual decay process given a set of final particles. To better analyse the hierarchical tree structure, we propose a graph-based deep learning model to infer the tree structure to reconstruct collision events. In particular, we use a compact matrix representation termed as lowest common ancestor generations (LCAG) matrix, to encode the particle decay tree structure. Then, we introduce a perturbative augmentation technique applied to node features, aiming to mimic experimental uncertainties and increase data diversity. We further propose a supervised graph contrastive learning algorithm to utilize the information of inter-particle relations from multiple decay processes. Extensive experiments show that our proposed supervised graph contrastive learning with perturbative augmentation (PASCL) method outperforms state-of-the-art baseline models on an existing physics-based dataset, significantly improving the reconstruction accuracy. This method provides a more effective training strategy for models with the same parameters and makes way for more accurate and efficient high-energy particle physics data analysis.

Via

Authors:Francesco Armando Di Bello, Anton Charkin-Gorbulin, Kyle Cranmer, Etienne Dreyer, Sanmay Ganguly, Eilam Gross, Lukas Heinrich, Lorenzo Santi, Marumi Kado, Nilotpal Kakati(+2 more)

Figures and Tables:

Abstract:A configurable calorimeter simulation for AI (COCOA) applications is presented, based on the Geant4 toolkit and interfaced with the Pythia event generator. This open-source project is aimed to support the development of machine learning algorithms in high energy physics that rely on realistic particle shower descriptions, such as reconstruction, fast simulation, and low-level analysis. Specifications such as the granularity and material of its nearly hermetic geometry are user-configurable. The tool is supplemented with simple event processing including topological clustering, jet algorithms, and a nearest-neighbors graph construction. Formatting is also provided to visualise events using the Phoenix event display software.

Via

Authors:Francesco Armando Di Bello, Sanmay Ganguly, Eilam Gross, Marumi Kado, Michael Pitt, Jonathan Shlomi, Lorenzo Santi

Figures and Tables:

Abstract:In high energy physics experiments Particle Flow (PFlow) algorithms are designed to reach optimal calorimeter reconstruction and jet energy resolution. A computer vision approach to PFlow reconstruction using deep Neural Network techniques based on Convolutional layers (cPFlow) is proposed. The algorithm is trained to learn, from calorimeter and charged particle track images, to distinguish the calorimeter energy deposits from neutral and charged particles in a non-trivial context, where the energy originated by a $\pi^{+}$ and a $\pi^{0}$ is overlapping within calorimeter clusters. The performance of the cPFlow and a traditional parametrized PFlow (pPFlow) algorithm are compared. The cPFlow provides a precise reconstruction of the neutral and charged energy in the calorimeter and therefore outperform more traditional pPFlow algorithm both, in energy response and position resolution.

Via

Authors:Hadar Serviansky, Nimrod Segol, Jonathan Shlomi, Kyle Cranmer, Eilam Gross, Haggai Maron, Yaron Lipman

Figures and Tables:

Abstract:Many problems in machine learning (ML) can be cast as learning functions from sets to graphs, or more generally to hypergraphs; in short, Set2Graph functions. Examples include clustering, learning vertex and edge features on graphs, and learning triplet data in a collection. Current neural network models that approximate Set2Graph functions come from two main ML sub-fields: equivariant learning, and similarity learning. Equivariant models would be in general computationally challenging or even infeasible, while similarity learning models can be shown to have limited expressive power. In this paper we suggest a neural network model family for learning Set2Graph functions that is both practical and of maximal expressive power (universal), that is, can approximate arbitrary continuous Set2Graph functions over compact sets. Testing our models on different machine learning tasks, including an application to particle physics, we find them favorable to existing baselines.

Via