Alert button
Picture for Kyle Cranmer

Kyle Cranmer

Alert button

Transforming the Bootstrap: Using Transformers to Compute Scattering Amplitudes in Planar N = 4 Super Yang-Mills Theory

Add code
Bookmark button
Alert button
May 09, 2024
Tianji Cai, Garrett W. Merz, François Charton, Niklas Nolte, Matthias Wilhelm, Kyle Cranmer, Lance J. Dixon

Viaarxiv icon

Robust Anomaly Detection for Particle Physics Using Multi-Background Representation Learning

Add code
Bookmark button
Alert button
Jan 16, 2024
Abhijith Gandrakota, Lily Zhang, Aahlad Puli, Kyle Cranmer, Jennifer Ngadiuba, Rajesh Ranganath, Nhan Tran

Viaarxiv icon

Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics

Add code
Bookmark button
Alert button
Sep 03, 2023
Kyle Cranmer, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Phiala E. Shanahan

Viaarxiv icon

Normalizing flows for lattice gauge theory in arbitrary space-time dimension

Add code
Bookmark button
Alert button
May 03, 2023
Ryan Abbott, Michael S. Albergo, Aleksandar Botev, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Gurtej Kanwar, Alexander G. D. G. Matthews, Sébastien Racanière, Ali Razavi, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban

Figure 1 for Normalizing flows for lattice gauge theory in arbitrary space-time dimension
Figure 2 for Normalizing flows for lattice gauge theory in arbitrary space-time dimension
Figure 3 for Normalizing flows for lattice gauge theory in arbitrary space-time dimension
Figure 4 for Normalizing flows for lattice gauge theory in arbitrary space-time dimension
Viaarxiv icon

Configurable calorimeter simulation for AI applications

Add code
Bookmark button
Alert button
Mar 08, 2023
Francesco Armando Di Bello, Anton Charkin-Gorbulin, Kyle Cranmer, Etienne Dreyer, Sanmay Ganguly, Eilam Gross, Lukas Heinrich, Lorenzo Santi, Marumi Kado, Nilotpal Kakati, Patrick Rieck, Matteo Tusoni

Figure 1 for Configurable calorimeter simulation for AI applications
Figure 2 for Configurable calorimeter simulation for AI applications
Figure 3 for Configurable calorimeter simulation for AI applications
Figure 4 for Configurable calorimeter simulation for AI applications
Viaarxiv icon

AI for Science: An Emerging Agenda

Add code
Bookmark button
Alert button
Mar 07, 2023
Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, Jessica Montgomery

Figure 1 for AI for Science: An Emerging Agenda
Figure 2 for AI for Science: An Emerging Agenda
Figure 3 for AI for Science: An Emerging Agenda
Viaarxiv icon

Aspects of scaling and scalability for flow-based sampling of lattice QCD

Add code
Bookmark button
Alert button
Nov 14, 2022
Ryan Abbott, Michael S. Albergo, Aleksandar Botev, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Alexander G. D. G. Matthews, Sébastien Racanière, Ali Razavi, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban

Figure 1 for Aspects of scaling and scalability for flow-based sampling of lattice QCD
Figure 2 for Aspects of scaling and scalability for flow-based sampling of lattice QCD
Figure 3 for Aspects of scaling and scalability for flow-based sampling of lattice QCD
Figure 4 for Aspects of scaling and scalability for flow-based sampling of lattice QCD
Viaarxiv icon

Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions

Add code
Bookmark button
Alert button
Jul 18, 2022
Ryan Abbott, Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Betsy Tian, Julian M. Urban

Figure 1 for Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
Figure 2 for Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
Figure 3 for Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
Figure 4 for Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
Viaarxiv icon

Flow-based sampling in the lattice Schwinger model at criticality

Add code
Bookmark button
Alert button
Feb 23, 2022
Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban

Figure 1 for Flow-based sampling in the lattice Schwinger model at criticality
Figure 2 for Flow-based sampling in the lattice Schwinger model at criticality
Viaarxiv icon

Simulation Intelligence: Towards a New Generation of Scientific Methods

Add code
Bookmark button
Alert button
Dec 06, 2021
Alexander Lavin, Hector Zenil, Brooks Paige, David Krakauer, Justin Gottschlich, Tim Mattson, Anima Anandkumar, Sanjay Choudry, Kamil Rocki, Atılım Güneş Baydin, Carina Prunkl, Olexandr Isayev, Erik Peterson, Peter L. McMahon, Jakob Macke, Kyle Cranmer, Jiaxin Zhang, Haruko Wainwright, Adi Hanuka, Manuela Veloso, Samuel Assefa, Stephan Zheng, Avi Pfeffer

Figure 1 for Simulation Intelligence: Towards a New Generation of Scientific Methods
Figure 2 for Simulation Intelligence: Towards a New Generation of Scientific Methods
Figure 3 for Simulation Intelligence: Towards a New Generation of Scientific Methods
Figure 4 for Simulation Intelligence: Towards a New Generation of Scientific Methods
Viaarxiv icon