UC Berkeley
Abstract:Recent advancements in large language models have influenced the development of video large multimodal models (VLMMs). The previous approaches for VLMMs involved Supervised Fine-Tuning (SFT) with instruction-tuned datasets, integrating LLM with visual encoders, and adding additional learnable modules. Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data compared to text-only data. We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF), providing self-preference feedback to refine itself and facilitating the alignment of video and text modalities. In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback in order to enrich the understanding of video content. Demonstrating enhanced performance across diverse video benchmarks, our multimodal RLAIF approach, VLM-RLAIF, outperforms existing approaches, including the SFT model. We commit to open-sourcing our code, models, and datasets to foster further research in this area.
Abstract:Visual Question Answering (VQA) often involves diverse reasoning scenarios across Vision and Language (V&L). Most prior VQA studies, however, have merely focused on assessing the model's overall accuracy without evaluating it on different reasoning cases. Furthermore, some recent works observe that conventional Chain-of-Thought (CoT) prompting fails to generate effective reasoning for VQA, especially for complex scenarios requiring multi-hop reasoning. In this paper, we propose II-MMR, a novel idea to identify and improve multi-modal multi-hop reasoning in VQA. In specific, II-MMR takes a VQA question with an image and finds a reasoning path to reach its answer using two novel language promptings: (i) answer prediction-guided CoT prompt, or (ii) knowledge triplet-guided prompt. II-MMR then analyzes this path to identify different reasoning cases in current VQA benchmarks by estimating how many hops and what types (i.e., visual or beyond-visual) of reasoning are required to answer the question. On popular benchmarks including GQA and A-OKVQA, II-MMR observes that most of their VQA questions are easy to answer, simply demanding "single-hop" reasoning, whereas only a few questions require "multi-hop" reasoning. Moreover, while the recent V&L model struggles with such complex multi-hop reasoning questions even using the traditional CoT method, II-MMR shows its effectiveness across all reasoning cases in both zero-shot and fine-tuning settings.
Abstract:With the advent of large language models (LLM), the line between human-crafted and machine-generated texts has become increasingly blurred. This paper delves into the inquiry of identifying discernible and unique linguistic properties in texts that were written by humans, particularly uncovering the underlying discourse structures of texts beyond their surface structures. Introducing a novel methodology, we leverage hierarchical parse trees and recursive hypergraphs to unveil distinctive discourse patterns in texts produced by both LLMs and humans. Empirical findings demonstrate that, although both LLMs and humans generate distinct discourse patterns influenced by specific domains, human-written texts exhibit more structural variability, reflecting the nuanced nature of human writing in different domains. Notably, incorporating hierarchical discourse features enhances binary classifiers' overall performance in distinguishing between human-written and machine-generated texts, even on out-of-distribution and paraphrased samples. This underscores the significance of incorporating hierarchical discourse features in the analysis of text patterns. The code and dataset will be available at [TBA].
Abstract:This work delves into the expanding role of large language models (LLMs) in generating artificial data. LLMs are increasingly employed to create a variety of outputs, including annotations, preferences, instruction prompts, simulated dialogues, and free text. As these forms of LLM-generated data often intersect in their application, they exert mutual influence on each other and raise significant concerns about the quality and diversity of the artificial data incorporated into training cycles, leading to an artificial data ecosystem. To the best of our knowledge, this is the first study to aggregate various types of LLM-generated text data, from more tightly constrained data like "task labels" to more lightly constrained "free-form text". We then stress test the quality and implications of LLM-generated artificial data, comparing it with human data across various existing benchmarks. Despite artificial data's capability to match human performance, this paper reveals significant hidden disparities, especially in complex tasks where LLMs often miss the nuanced understanding of intrinsic human-generated content. This study critically examines diverse LLM-generated data and emphasizes the need for ethical practices in data creation and when using LLMs. It highlights the LLMs' shortcomings in replicating human traits and behaviors, underscoring the importance of addressing biases and artifacts produced in LLM-generated content for future research and development. All data and code are available on our project page.
Abstract:Training large language models (LLMs) with a large and diverse instruction dataset aligns the models to comprehend and follow human instructions. Recent works have shown that using a small set of high-quality instructions can outperform using large yet more noisy ones. Because instructions are unlabeled and their responses are natural text, traditional active learning schemes with the model's confidence cannot be directly applied to the selection of unlabeled instructions. In this work, we propose a novel method for instruction selection, called SelectLLM, that leverages LLMs for the selection of high-quality instructions. Our high-level idea is to use LLMs to estimate the usefulness and impactfulness of each instruction without the corresponding labels (i.e., responses), via prompting. SelectLLM involves two steps: dividing the unlabelled instructions using a clustering algorithm (e.g., CoreSet) to multiple clusters, and then prompting LLMs to choose high-quality instructions within each cluster. SelectLLM showed comparable or slightly better performance on the popular instruction benchmarks, compared to the recent state-of-the-art selection methods. All code and data are publicly available (https://github.com/minnesotanlp/select-llm).
Abstract:Measuring the coherence of text is a vital aspect of evaluating the quality of written content. Recent advancements in neural coherence modeling have demonstrated their efficacy in capturing entity coreference and discourse relations, thereby enhancing coherence evaluation. However, many existing methods heavily depend on static embeddings or focus narrowly on nearby context, constraining their capacity to measure the overarching coherence of long texts. In this paper, we posit that coherent texts inherently manifest a sequential and cohesive interplay among sentences, effectively conveying the central theme, purpose, or standpoint. To explore this abstract relationship, we introduce the "BBScore," a novel reference-free metric grounded in Brownian bridge theory for assessing text coherence. Our findings showcase that when synergized with a simple additional classification component, this metric attains a performance level comparable to state-of-the-art techniques on standard artificial discrimination tasks. We also establish in downstream tasks that this metric effectively differentiates between human-written documents and text generated by large language models under a specific domain. Furthermore, we illustrate the efficacy of this approach in detecting written styles attributed to diverse large language models, underscoring its potential for generalizability. In summary, we present a novel Brownian bridge coherence metric capable of measuring both local and global text coherence, while circumventing the need for end-to-end model training. This flexibility allows for its application in various downstream tasks.
Abstract:Collecting diverse human data on subjective NLP topics is costly and challenging. As Large Language Models (LLMs) have developed human-like capabilities, there is a recent trend in collaborative efforts between humans and LLMs for generating diverse data, offering potential scalable and efficient solutions. However, the extent of LLMs' capability to generate diverse perspectives on subjective topics remains an unexplored question. In this study, we investigate LLMs' capacity for generating diverse perspectives and rationales on subjective topics, such as social norms and argumentative texts. We formulate this problem as diversity extraction in LLMs and propose a criteria-based prompting technique to ground diverse opinions and measure perspective diversity from the generated criteria words. Our results show that measuring semantic diversity through sentence embeddings and distance metrics is not enough to measure perspective diversity. To see how far we can extract diverse perspectives from LLMs, or called diversity coverage, we employ a step-by-step recall prompting for generating more outputs from the model in an iterative manner. As we apply our prompting method to other tasks (hate speech labeling and story continuation), indeed we find that LLMs are able to generate diverse opinions according to the degree of task subjectivity.
Abstract:Large language models (LLMs) are revolutionizing various fields by leveraging large text corpora for context-aware intelligence. Due to the context size, however, encoding an entire graph with LLMs is fundamentally limited. This paper explores how to better integrate graph data with LLMs and presents a novel approach using various encoding modalities (e.g., text, image, and motif) and approximation of global connectivity of a graph using different prompting methods to enhance LLMs' effectiveness in handling complex graph structures. The study also introduces GraphTMI, a new benchmark for evaluating LLMs in graph structure analysis, focusing on factors such as homophily, motif presence, and graph difficulty. Key findings reveal that image modality, supported by advanced vision-language models like GPT-4V, is more effective than text in managing token limits while retaining critical information. The research also examines the influence of different factors on each encoding modality's performance. This study highlights the current limitations and charts future directions for LLMs in graph understanding and reasoning tasks.
Abstract:Human-like chatbots necessitate the use of commonsense reasoning in order to effectively comprehend and respond to implicit information present within conversations. Achieving such coherence and informativeness in responses, however, is a non-trivial task. Even for large language models (LLMs), the task of identifying and aggregating key evidence within a single hop presents a substantial challenge. This complexity arises because such evidence is scattered across multiple turns in a conversation, thus necessitating integration over multiple hops. Hence, our focus is to facilitate such multi-hop reasoning over a dialogue context, namely dialogue chain-of-thought (CoT) reasoning. To this end, we propose a knowledge distillation framework that leverages LLMs as unreliable teachers and selectively distills consistent and helpful rationales via alignment filters. We further present DOCTOR, a DialOgue Chain-of-ThOught Reasoner that provides reliable CoT rationales for response generation. We conduct extensive experiments to show that enhancing dialogue agents with high-quality rationales from DOCTOR significantly improves the quality of their responses.
Abstract:Large Language Models (LLMs) have recently been shown to be effective as automatic evaluators with simple prompting and in-context learning. In this work, we assemble 15 LLMs of four different size ranges and evaluate their output responses by preference ranking from the other LLMs as evaluators, such as System Star is better than System Square. We then evaluate the quality of ranking outputs introducing the Cognitive Bias Benchmark for LLMs as Evaluators (CoBBLEr), a benchmark to measure six different cognitive biases in LLM evaluation outputs, such as the Egocentric bias where a model prefers to rank its own outputs highly in evaluation. We find that LLMs are biased text quality evaluators, exhibiting strong indications on our bias benchmark (average of 40% of comparisons across all models) within each of their evaluations that question their robustness as evaluators. Furthermore, we examine the correlation between human and machine preferences and calculate the average Rank-Biased Overlap (RBO) score to be 49.6%, indicating that machine preferences are misaligned with humans. According to our findings, LLMs may still be unable to be utilized for automatic annotation aligned with human preferences. Our project page is at: https://minnesotanlp.github.io/cobbler.