Alert button
Picture for David Zimmerer

David Zimmerer

Alert button

GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data

Add code
Bookmark button
Alert button
Jun 09, 2021
Jens Petersen, Gregor Köhler, David Zimmerer, Fabian Isensee, Paul F. Jäger, Klaus H. Maier-Hein

Figure 1 for GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Figure 2 for GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Figure 3 for GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Figure 4 for GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Viaarxiv icon

The Federated Tumor Segmentation (FeTS) Challenge

Add code
Bookmark button
Alert button
May 14, 2021
Sarthak Pati, Ujjwal Baid, Maximilian Zenk, Brandon Edwards, Micah Sheller, G. Anthony Reina, Patrick Foley, Alexey Gruzdev, Jason Martin, Shadi Albarqouni, Yong Chen, Russell Taki Shinohara, Annika Reinke, David Zimmerer, John B. Freymann, Justin S. Kirby, Christos Davatzikos, Rivka R. Colen, Aikaterini Kotrotsou, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Hassan Fathallah-Shaykh, Roland Wiest, Andras Jakab, Marc-Andre Weber, Abhishek Mahajan, Lena Maier-Hein, Jens Kleesiek, Bjoern Menze, Klaus Maier-Hein, Spyridon Bakas

Figure 1 for The Federated Tumor Segmentation (FeTS) Challenge
Figure 2 for The Federated Tumor Segmentation (FeTS) Challenge
Viaarxiv icon

A Case for the Score: Identifying Image Anomalies using Variational Autoencoder Gradients

Add code
Bookmark button
Alert button
Nov 28, 2019
David Zimmerer, Jens Petersen, Simon A. A. Kohl, Klaus H. Maier-Hein

Figure 1 for A Case for the Score: Identifying Image Anomalies using Variational Autoencoder Gradients
Figure 2 for A Case for the Score: Identifying Image Anomalies using Variational Autoencoder Gradients
Figure 3 for A Case for the Score: Identifying Image Anomalies using Variational Autoencoder Gradients
Figure 4 for A Case for the Score: Identifying Image Anomalies using Variational Autoencoder Gradients
Viaarxiv icon

High- and Low-level image component decomposition using VAEs for improved reconstruction and anomaly detection

Add code
Bookmark button
Alert button
Nov 27, 2019
David Zimmerer, Jens Petersen, Klaus Maier-Hein

Figure 1 for High- and Low-level image component decomposition using VAEs for improved reconstruction and anomaly detection
Figure 2 for High- and Low-level image component decomposition using VAEs for improved reconstruction and anomaly detection
Figure 3 for High- and Low-level image component decomposition using VAEs for improved reconstruction and anomaly detection
Viaarxiv icon

Unsupervised Anomaly Localization using Variational Auto-Encoders

Add code
Bookmark button
Alert button
Jul 11, 2019
David Zimmerer, Fabian Isensee, Jens Petersen, Simon Kohl, Klaus Maier-Hein

Figure 1 for Unsupervised Anomaly Localization using Variational Auto-Encoders
Figure 2 for Unsupervised Anomaly Localization using Variational Auto-Encoders
Figure 3 for Unsupervised Anomaly Localization using Variational Auto-Encoders
Figure 4 for Unsupervised Anomaly Localization using Variational Auto-Encoders
Viaarxiv icon

Context-encoding Variational Autoencoder for Unsupervised Anomaly Detection

Add code
Bookmark button
Alert button
Dec 14, 2018
David Zimmerer, Simon A. A. Kohl, Jens Petersen, Fabian Isensee, Klaus H. Maier-Hein

Figure 1 for Context-encoding Variational Autoencoder for Unsupervised Anomaly Detection
Figure 2 for Context-encoding Variational Autoencoder for Unsupervised Anomaly Detection
Viaarxiv icon

nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation

Add code
Bookmark button
Alert button
Sep 27, 2018
Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F. Jaeger, Simon Kohl, Jakob Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, Klaus H. Maier-Hein

Figure 1 for nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation
Figure 2 for nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation
Figure 3 for nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation
Viaarxiv icon

Exploiting the potential of unlabeled endoscopic video data with self-supervised learning

Add code
Bookmark button
Alert button
Jan 31, 2018
Tobias Ross, David Zimmerer, Anant Vemuri, Fabian Isensee, Manuel Wiesenfarth, Sebastian Bodenstedt, Fabian Both, Philip Kessler, Martin Wagner, Beat Müller, Hannes Kenngott, Stefanie Speidel, Annette Kopp-Schneider, Klaus Maier-Hein, Lena Maier-Hein

Figure 1 for Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
Figure 2 for Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
Figure 3 for Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
Figure 4 for Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
Viaarxiv icon