Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
In Search of Lost Domain Generalization

Jul 02, 2020
Ishaan Gulrajani, David Lopez-Paz


  Access Paper or Ask Questions

Using Hindsight to Anchor Past Knowledge in Continual Learning

Feb 19, 2020
Arslan Chaudhry, Albert Gordo, Puneet K. Dokania, Philip Torr, David Lopez-Paz


  Access Paper or Ask Questions

Invariant Risk Minimization

Jul 05, 2019
Martin Arjovsky, LĂ©on Bottou, Ishaan Gulrajani, David Lopez-Paz


  Access Paper or Ask Questions

Interpolation Consistency Training for Semi-Supervised Learning

Mar 09, 2019
Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, David Lopez-Paz

* Semi-supervised Learning, Deep Learning, Neural Networks 

  Access Paper or Ask Questions

Learning about an exponential amount of conditional distributions

Feb 22, 2019
Mohamed Ishmael Belghazi, Maxime Oquab, Yann LeCun, David Lopez-Paz

* 8 pages, 7 figures 

  Access Paper or Ask Questions

Frequentist uncertainty estimates for deep learning

Nov 02, 2018
Natasa Tagasovska, David Lopez-Paz


  Access Paper or Ask Questions

Adversarial Vulnerability of Neural Networks Increases With Input Dimension

Oct 08, 2018
Carl-Johann Simon-Gabriel, Yann Ollivier, Léon Bottou, Bernhard Schölkopf, David Lopez-Paz

* 10 pages main text and references, 8 pages appendix, 7 figures 

  Access Paper or Ask Questions

mixup: Beyond Empirical Risk Minimization

Apr 27, 2018
Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz

* ICLR camera ready version. Changes vs V1: fix repo URL; add ablation studies; add mixup + dropout etc 

  Access Paper or Ask Questions

Revisiting Classifier Two-Sample Tests

Mar 13, 2018
David Lopez-Paz, Maxime Oquab


  Access Paper or Ask Questions

SAM: Structural Agnostic Model, Causal Discovery and Penalized Adversarial Learning

Mar 13, 2018
Diviyan Kalainathan, Olivier Goudet, Isabelle Guyon, David Lopez-Paz, Michèle Sebag


  Access Paper or Ask Questions

Geometrical Insights for Implicit Generative Modeling

Mar 12, 2018
Leon Bottou, Martin Arjovsky, David Lopez-Paz, Maxime Oquab


  Access Paper or Ask Questions

Causal Generative Neural Networks

Feb 05, 2018
Olivier Goudet, Diviyan Kalainathan, Philippe Caillou, Isabelle Guyon, David Lopez-Paz, Michèle Sebag


  Access Paper or Ask Questions

Gradient Episodic Memory for Continual Learning

Nov 04, 2017
David Lopez-Paz, Marc'Aurelio Ranzato

* Published at NIPS 2017 

  Access Paper or Ask Questions

Discovering Causal Signals in Images

Oct 31, 2017
David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Schölkopf, Léon Bottou


  Access Paper or Ask Questions

Patient-Driven Privacy Control through Generalized Distillation

Oct 13, 2017
Z. Berkay Celik, David Lopez-Paz, Patrick McDaniel

* IEEE Symposium on Privacy-Aware Computing (IEEE PAC), 2017 

  Access Paper or Ask Questions

Learning Functional Causal Models with Generative Neural Networks

Oct 04, 2017
Olivier Goudet, Diviyan Kalainathan, Philippe Caillou, David Lopez-Paz, Isabelle Guyon, Michèle Sebag, Aris Tritas, Paola Tubaro


  Access Paper or Ask Questions

Optimizing the Latent Space of Generative Networks

Jul 18, 2017
Piotr Bojanowski, Armand Joulin, David Lopez-Paz, Arthur Szlam


  Access Paper or Ask Questions

Causal Discovery Using Proxy Variables

Feb 23, 2017
Mateo Rojas-Carulla, Marco Baroni, David Lopez-Paz


  Access Paper or Ask Questions

From Dependence to Causation

Jul 12, 2016
David Lopez-Paz

* PhD thesis 

  Access Paper or Ask Questions

No Regret Bound for Extreme Bandits

Apr 11, 2016
Robert Nishihara, David Lopez-Paz, LĂ©on Bottou

* 11 pages, International Conference on Artificial Intelligence and Statistics, 2016 

  Access Paper or Ask Questions

Unifying distillation and privileged information

Feb 26, 2016
David Lopez-Paz, Léon Bottou, Bernhard Schölkopf, Vladimir Vapnik

* Proceedings of the International Conference on Learning Representations (2016) 1-10 

  Access Paper or Ask Questions

Non-linear Causal Inference using Gaussianity Measures

Feb 21, 2016
Daniel Hernández-Lobato, Pablo Morales-Mombiela, David Lopez-Paz, Alberto Suárez

* 35 pages, 9 figures 

  Access Paper or Ask Questions

Minimax Lower Bounds for Realizable Transductive Classification

Feb 09, 2016
Ilya Tolstikhin, David Lopez-Paz


  Access Paper or Ask Questions

Towards a Learning Theory of Cause-Effect Inference

May 18, 2015
David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, Ilya Tolstikhin


  Access Paper or Ask Questions

The Randomized Causation Coefficient

Sep 15, 2014
David Lopez-Paz, Krikamol Muandet, Benjamin Recht


  Access Paper or Ask Questions

Randomized Nonlinear Component Analysis

May 13, 2014
David Lopez-Paz, Suvrit Sra, Alex Smola, Zoubin Ghahramani, Bernhard Schölkopf

* Appearing in ICML 2014 

  Access Paper or Ask Questions

The Randomized Dependence Coefficient

Jun 03, 2013
David Lopez-Paz, Philipp Hennig, Bernhard Schölkopf


  Access Paper or Ask Questions

Gaussian Process Vine Copulas for Multivariate Dependence

Feb 16, 2013
David Lopez-Paz, José Miguel Hernández-Lobato, Zoubin Ghahramani

* Accepted to International Conference in Machine Learning (ICML 2013) 

  Access Paper or Ask Questions

Semi-Supervised Domain Adaptation with Non-Parametric Copulas

Jan 01, 2013
David Lopez-Paz, José Miguel Hernández-Lobato, Bernhard Schölkopf

* 9 pages, Appearing on Advances in Neural Information Processing Systems 25 

  Access Paper or Ask Questions