Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Cooperative learning for multi-view analysis


Jan 06, 2022
Daisy Yi Ding, Balasubramanian Narasimhan, Robert Tibshirani


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Handling Missing Data with Graph Representation Learning


Oct 30, 2020
Jiaxuan You, Xiaobai Ma, Daisy Yi Ding, Mykel Kochenderfer, Jure Leskovec

* NeurIPS 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

NGBoost: Natural Gradient Boosting for Probabilistic Prediction


Oct 09, 2019
Tony Duan, Anand Avati, Daisy Yi Ding, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Counterfactual Reasoning for Fair Clinical Risk Prediction


Jul 14, 2019
Stephen Pfohl, Tony Duan, Daisy Yi Ding, Nigam H. Shah

* Machine Learning for Healthcare 2019 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning to Summarize Radiology Findings


Oct 08, 2018
Yuhao Zhang, Daisy Yi Ding, Tianpei Qian, Christopher D. Manning, Curtis P. Langlotz

* EMNLP 2018 Workshop on Health Text Mining and Information Analysis (EMNLP-LOUHI). Code and pretrained model available at: https://github.com/yuhaozhang/summarize-radiology-findings 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data


Oct 04, 2018
Daisy Yi Ding, Chloé Simpson, Stephen Pfohl, Dave C. Kale, Kenneth Jung, Nigam H. Shah

* Pacific Symposium on Biocomputing (PSB) 2019, Hawaii, https://psb.stanford.edu/psb-online/; 13 pages, 7 figures; updated with the camera-ready version of the manuscript 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email