Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Bryan Perozzi

Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training data


Aug 02, 2021
Qi Zhu, Natalia Ponomareva, Jiawei Han, Bryan Perozzi


  Access Paper or Ask Questions

Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning


Feb 08, 2021
Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan

* To appear in ICLR 2021 

  Access Paper or Ask Questions

Pathfinder Discovery Networks for Neural Message Passing


Oct 24, 2020
Benedek Rozemberczki, Peter Englert, Amol Kapoor, Martin Blais, Bryan Perozzi


  Access Paper or Ask Questions

InstantEmbedding: Efficient Local Node Representations


Oct 14, 2020
┼×tefan Post─âvaru, Anton Tsitsulin, Filipe Miguel Gon├žalves de Almeida, Yingtao Tian, Silvio Lattanzi, Bryan Perozzi

* 23 pages, 9 figures 

  Access Paper or Ask Questions

Grale: Designing Networks for Graph Learning


Jul 23, 2020
Jonathan Halcrow, Alexandru Mo┼čoi, Sam Ruth, Bryan Perozzi

* 10 pages, 6 figures, to be published in KDD'20 

  Access Paper or Ask Questions

Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks


Jul 06, 2020
Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais, Shawn O'Banion


  Access Paper or Ask Questions

Scaling Graph Neural Networks with Approximate PageRank


Jul 03, 2020
Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek R├│zemberczki, Michal Lukasik, Stephan G├╝nnemann

* Published as a Conference Paper at ACM SIGKDD 2020 

  Access Paper or Ask Questions

Graph Clustering with Graph Neural Networks


Jun 30, 2020
Anton Tsitsulin, John Palowitch, Bryan Perozzi, Emmanuel M├╝ller


  Access Paper or Ask Questions

Machine Learning on Graphs: A Model and Comprehensive Taxonomy


May 07, 2020
Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher R├ę, Kevin Murphy


  Access Paper or Ask Questions

Just SLaQ When You Approximate: Accurate Spectral Distances for Web-Scale Graphs


Mar 03, 2020
Anton Tsitsulin, Marina Munkhoeva, Bryan Perozzi

* To appear at TheWebConf (WWW) 2020 

  Access Paper or Ask Questions

MONET: Debiasing Graph Embeddings via the Metadata-Orthogonal Training Unit


Sep 25, 2019
John Palowitch, Bryan Perozzi


  Access Paper or Ask Questions

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing


May 28, 2019
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan


  Access Paper or Ask Questions

Is a Single Embedding Enough? Learning Node Representations that Capture Multiple Social Contexts


May 06, 2019
Alessandro Epasto, Bryan Perozzi

* In Proceedings of "The Web Conference" 2019, WWW, 2019 

  Access Paper or Ask Questions

MixHop: Higher-Order Graph Convolution Architectures via Sparsified Neighborhood Mixing


Apr 30, 2019
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, Aram Galstyan

* International Conference on Machine Learning, 2019 

  Access Paper or Ask Questions

DDGK: Learning Graph Representations for Deep Divergence Graph Kernels


Apr 21, 2019
Rami Al-Rfou, Dustin Zelle, Bryan Perozzi

* Proceedings of the 2019 World Wide Web Conference (WWW '19), May 13--17, 2019, San Francisco, CA, USA 
* www '19 

  Access Paper or Ask Questions

Watch Your Step: Learning Node Embeddings via Graph Attention


Sep 12, 2018
Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, Alex Alemi

* Neural Information Processing Systems, 2018 

  Access Paper or Ask Questions

N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification


Feb 24, 2018
Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, Joonseok Lee


  Access Paper or Ask Questions

Learning Edge Representations via Low-Rank Asymmetric Projections


Sep 13, 2017
Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou

* ACM International Conference on Information and Knowledge Management, 2017 

  Access Paper or Ask Questions

On the Convergent Properties of Word Embedding Methods


May 12, 2016
Yingtao Tian, Vivek Kulkarni, Bryan Perozzi, Steven Skiena

* RepEval @ ACL 2016 

  Access Paper or Ask Questions

Freshman or Fresher? Quantifying the Geographic Variation of Internet Language


Mar 07, 2016
Vivek Kulkarni, Bryan Perozzi, Steven Skiena

* 11 pages (updated submission) 

  Access Paper or Ask Questions

Statistically Significant Detection of Linguistic Change


Nov 12, 2014
Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, Steven Skiena

* 11 pages, 7 figures, 4 tables 

  Access Paper or Ask Questions

POLYGLOT-NER: Massive Multilingual Named Entity Recognition


Oct 14, 2014
Rami Al-Rfou, Vivek Kulkarni, Bryan Perozzi, Steven Skiena

* 9 pages, 4 figures, 5 tables 

  Access Paper or Ask Questions

Inducing Language Networks from Continuous Space Word Representations


Jun 27, 2014
Bryan Perozzi, Rami Al-Rfou, Vivek Kulkarni, Steven Skiena

* 14 pages 

  Access Paper or Ask Questions

Polyglot: Distributed Word Representations for Multilingual NLP


Jun 27, 2014
Rami Al-Rfou, Bryan Perozzi, Steven Skiena

* 10 pages, 2 figures, Proceedings of Conference on Computational Natural Language Learning CoNLL'2013 

  Access Paper or Ask Questions

DeepWalk: Online Learning of Social Representations


Jun 27, 2014
Bryan Perozzi, Rami Al-Rfou, Steven Skiena

* 10 pages, 5 figures, 4 tables 

  Access Paper or Ask Questions

Exploring the power of GPU's for training Polyglot language models


Apr 15, 2014
Vivek Kulkarni, Rami Al-Rfou', Bryan Perozzi, Steven Skiena

* version 2 (just corrected citation) 

  Access Paper or Ask Questions

The Expressive Power of Word Embeddings


May 29, 2013
Yanqing Chen, Bryan Perozzi, Rami Al-Rfou, Steven Skiena

* submitted to ICML 2013, Deep Learning for Audio, Speech and Language Processing Workshop. 8 pages, 8 figures 

  Access Paper or Ask Questions