Existing efforts to improve logical reasoning ability of language models have predominantly relied on supervised fine-tuning, hindering generalization to new domains and/or tasks. The development of Large Langauge Models (LLMs) has demonstrated the capacity of compressing abundant knowledge into a single proxy, enabling them to tackle multiple tasks effectively. Our preliminary experiments, nevertheless, show that LLMs do not show capability on logical reasoning. The performance of LLMs on logical reasoning benchmarks is far behind the existing state-of-the-art baselines. In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training, and activating it via in-context learning, which we termed as LogicLLM. Specifically, we devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion. The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM. Besides, we conduct extensive ablation studies to analyze the key factors in designing logic-oriented proxy tasks.
We introduce Chain of Knowledge (CoK), a framework that augments large language models with structured knowledge bases to improve factual correctness and reduce hallucination. Compared to previous works which only retrieve unstructured texts, CoK leverages structured knowledge bases which support complex queries and offer more direct factual statements. To assist large language models to effectively query knowledge bases, we propose a query generator model with contrastive instruction-tuning. As the query generator is separate from the frozen large language model, our framework is modular and thus easily adapted to various knowledge sources and models. Experiments show that our framework significantly enhances the factual correctness of large language models on knowledge-intensive tasks.
This project focuses on enhancing open-source large language models through instruction-tuning and providing comprehensive evaluations of their performance. We explore how various training data factors, such as quantity, quality, and linguistic distribution, influence the performance of instruction-tuned models trained on publicly accessible high-quality instruction datasets for both English and Chinese languages. Our goal is to supplement evaluation with quantitative analyses, providing valuable insights for the continued advancement of open-source chat models. Our model, data, and code are publicly available for others to use and build upon.
In this survey, we review methods that retrieve multimodal knowledge to assist and augment generative models. This group of works focuses on retrieving grounding contexts from external sources, including images, codes, tables, graphs, and audio. As multimodal learning and generative AI have become more and more impactful, such retrieval augmentation offers a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. We provide an in-depth review of retrieval-augmented generation in different modalities and discuss potential future directions. As this is an emerging field, we continue to add new papers and methods.
GPT-3 (Generative Pre-trained Transformer 3) is a large-scale autoregressive language model developed by OpenAI, which has demonstrated impressive few-shot performance on a wide range of natural language processing (NLP) tasks. Hence, an intuitive application is to use it for data annotation. In this paper, we investigate whether GPT-3 can be used as a good data annotator for NLP tasks. Data annotation is the process of labeling data that could be used to train machine learning models. It is a crucial step in the development of NLP systems, as it allows the model to learn the relationship between the input data and the desired output. Given the impressive language capabilities of GPT-3, it is natural to wonder whether it can be used to effectively annotate data for NLP tasks. In this paper, we evaluate the performance of GPT-3 as a data annotator by comparing it with traditional data annotation methods and analyzing its output on a range of tasks. Through this analysis, we aim to provide insight into the potential of GPT-3 as a general-purpose data annotator in NLP.
Much recent progress in task-oriented dialogue (ToD) systems has been driven by available annotation data across multiple domains for training. Over the last few years, there has been a move towards data curation for multilingual ToD systems that are applicable to serve people speaking different languages. However, existing multilingual ToD datasets either have a limited coverage of languages due to the high cost of data curation, or ignore the fact that dialogue entities barely exist in countries speaking these languages. To tackle these limitations, we introduce a novel data curation method that generates GlobalWoZ -- a large-scale multilingual ToD dataset globalized from an English ToD dataset for three unexplored use cases. Our method is based on translating dialogue templates and filling them with local entities in the target-language countries. We release our dataset as well as a set of strong baselines to encourage research on learning multilingual ToD systems for real use cases.
Adapter-based tuning has recently arisen as an alternative to fine-tuning. It works by adding light-weight adapter modules to a pretrained language model (PrLM) and only updating the parameters of adapter modules when learning on a downstream task. As such, it adds only a few trainable parameters per new task, allowing a high degree of parameter sharing. Prior studies have shown that adapter-based tuning often achieves comparable results to fine-tuning. However, existing work only focuses on the parameter-efficient aspect of adapter-based tuning while lacking further investigation on its effectiveness. In this paper, we study the latter. We first show that adapter-based tuning better mitigates forgetting issues than fine-tuning since it yields representations with less deviation from those generated by the initial PrLM. We then empirically compare the two tuning methods on several downstream NLP tasks and settings. We demonstrate that 1) adapter-based tuning outperforms fine-tuning on low-resource and cross-lingual tasks; 2) it is more robust to overfitting and less sensitive to changes in learning rates.
Data augmentation techniques have been widely used to improve machine learning performance as they enhance the generalization capability of models. In this work, to generate high quality synthetic data for low-resource tagging tasks, we propose a novel augmentation method with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.