Abstract:Accurate bronchoscope localization is essential for pulmonary interventions, by providing six degrees of freedom (DOF) in airway navigation. However, the robustness of current vision-based methods is often compromised in clinical practice, and they struggle to perform in real-time and to generalize across cases unseen during training. To overcome these challenges, we propose a novel Probabilistic Airway Navigation System (PANS), leveraging Monte-Carlo method with pose hypotheses and likelihoods to achieve robust and real-time bronchoscope localization. Specifically, our PANS incorporates diverse visual representations (\textit{e.g.}, odometry and landmarks) by leveraging two key modules, including the Depth-based Motion Inference (DMI) and the Bronchial Semantic Analysis (BSA). To generate the pose hypotheses of bronchoscope for PANS, we devise the DMI to accurately propagate the estimation of pose hypotheses over time. Moreover, to estimate the accurate pose likelihood, we devise the BSA module by effectively distinguishing between similar bronchial regions in endoscopic images, along with a novel metric to assess the congruence between estimated depth maps and the segmented airway structure. Under this probabilistic formulation, our PANS is capable of achieving the 6-DOF bronchoscope localization with superior accuracy and robustness. Extensive experiments on the collected pulmonary intervention dataset comprising 10 clinical cases confirm the advantage of our PANS over state-of-the-arts, in terms of both robustness and generalization in localizing deeper airway branches and the efficiency of real-time inference. The proposed PANS reveals its potential to be a reliable tool in the operating room, promising to enhance the quality and safety of pulmonary interventions.
Abstract:Real-time 6 DOF localization of bronchoscopes is crucial for enhancing intervention quality. However, current vision-based technologies struggle to balance between generalization to unseen data and computational speed. In this study, we propose a Depth-based Dual-Loop framework for real-time Visually Navigated Bronchoscopy (DD-VNB) that can generalize across patient cases without the need of re-training. The DD-VNB framework integrates two key modules: depth estimation and dual-loop localization. To address the domain gap among patients, we propose a knowledge-embedded depth estimation network that maps endoscope frames to depth, ensuring generalization by eliminating patient-specific textures. The network embeds view synthesis knowledge into a cycle adversarial architecture for scale-constrained monocular depth estimation. For real-time performance, our localization module embeds a fast ego-motion estimation network into the loop of depth registration. The ego-motion inference network estimates the pose change of the bronchoscope in high frequency while depth registration against the pre-operative 3D model provides absolute pose periodically. Specifically, the relative pose changes are fed into the registration process as the initial guess to boost its accuracy and speed. Experiments on phantom and in-vivo data from patients demonstrate the effectiveness of our framework: 1) monocular depth estimation outperforms SOTA, 2) localization achieves an accuracy of Absolute Tracking Error (ATE) of 4.7 $\pm$ 3.17 mm in phantom and 6.49 $\pm$ 3.88 mm in patient data, 3) with a frame-rate approaching video capture speed, 4) without the necessity of case-wise network retraining. The framework's superior speed and accuracy demonstrate its promising clinical potential for real-time bronchoscopic navigation.
Abstract:Bronchoscopy plays a significant role in the early diagnosis and treatment of lung diseases. This process demands physicians to maneuver the flexible endoscope for reaching distal lesions, particularly requiring substantial expertise when examining the airways of the upper lung lobe. With the development of artificial intelligence and robotics, reinforcement learning (RL) method has been applied to the manipulation of interventional surgical robots. However, unlike human physicians who utilize multimodal information, most of the current RL methods rely on a single modality, limiting their performance. In this paper, we propose BronchoCopilot, a multimodal RL agent designed to acquire manipulation skills for autonomous bronchoscopy. BronchoCopilot specifically integrates images from the bronchoscope camera and estimated robot poses, aiming for a higher success rate within challenging airway environment. We employ auxiliary reconstruction tasks to compress multimodal data and utilize attention mechanisms to achieve an efficient latent representation of this data, serving as input for the RL module. This framework adopts a stepwise training and fine-tuning approach to mitigate the challenges of training difficulty. Our evaluation in the realistic simulation environment reveals that BronchoCopilot, by effectively harnessing multimodal information, attains a success rate of approximately 90\% in fifth generation airways with consistent movements. Additionally, it demonstrates a robust capacity to adapt to diverse cases.
Abstract:Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association.To achieve real-time performance, we employ a benchmark lightweight detector for efficient lumen detection. We are the first to introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures.Experiments on nine patient datasets demonstrate BronchoTrack's localization accuracy of 85.64 \%, while accessing up to the 4th generation of airways.Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it successfully localized the bronchoscope into the 8th generation airway.Experimental evaluation underscores BronchoTrack's real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.