Abstract:The safety of large language models (LLMs) has increasingly emerged as a fundamental aspect of their development. Existing safety alignment for LLMs is predominantly achieved through post-training methods, which are computationally expensive and often fail to generalize well across different models. A small number of lightweight alignment approaches either rely heavily on prior-computed safety injections or depend excessively on the model's own capabilities, resulting in limited generalization and degraded efficiency and usability during generation. In this work, we propose a safety-aware decoding method that requires only low-cost training of an expert model and employs a single neuron as a gating mechanism. By effectively balancing the model's intrinsic capabilities with external guidance, our approach simultaneously preserves utility and enhances output safety. It demonstrates clear advantages in training overhead and generalization across model scales, offering a new perspective on lightweight alignment for the safe and practical deployment of large language models. Code: https://github.com/Beijing-AISI/NGSD.
Abstract:Autonomous systems are increasingly deployed in open and dynamic environments -- from city streets to aerial and indoor spaces -- where perception models must remain reliable under sensor noise, environmental variation, and platform shifts. However, even state-of-the-art methods often degrade under unseen conditions, highlighting the need for robust and generalizable robot sensing. The RoboSense 2025 Challenge is designed to advance robustness and adaptability in robot perception across diverse sensing scenarios. It unifies five complementary research tracks spanning language-grounded decision making, socially compliant navigation, sensor configuration generalization, cross-view and cross-modal correspondence, and cross-platform 3D perception. Together, these tasks form a comprehensive benchmark for evaluating real-world sensing reliability under domain shifts, sensor failures, and platform discrepancies. RoboSense 2025 provides standardized datasets, baseline models, and unified evaluation protocols, enabling large-scale and reproducible comparison of robust perception methods. The challenge attracted 143 teams from 85 institutions across 16 countries, reflecting broad community engagement. By consolidating insights from 23 winning solutions, this report highlights emerging methodological trends, shared design principles, and open challenges across all tracks, marking a step toward building robots that can sense reliably, act robustly, and adapt across platforms in real-world environments.