Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Bernd Bischl

Bernd Bischl

Department of Statistics, Ludwig Maximilian University Munich

Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges


Jul 14, 2021
Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng, Marius Lindauer


  Access Paper or Ask Questions

Mutation is all you need


Jul 04, 2021
Lennart Schneider, Florian Pfisterer, Martin Binder, Bernd Bischl

* Accepted for the 8th ICML Workshop on Automated Machine Learning (2021). 10 pages, 1 table, 3 figures 

  Access Paper or Ask Questions

Decomposition of Global Feature Importance into Direct and Associative Components (DEDACT)


Jun 15, 2021
Gunnar K├Ânig, Timo Freiesleben, Bernd Bischl, Giuseppe Casalicchio, Moritz Grosse-Wentrup


  Access Paper or Ask Questions

Meta-Learning for Symbolic Hyperparameter Defaults


Jun 11, 2021
Pieter Gijsbers, Florian Pfisterer, Jan N. van Rijn, Bernd Bischl, Joaquin Vanschoren

* Pieter Gijsbers and Florian Pfisterer contributed equally to the paper. V1: Two page GECCO poster paper accepted at GECCO 2021. V2: The original full length paper (8 pages) with appendix 

  Access Paper or Ask Questions

Grouped Feature Importance and Combined Features Effect Plot


Apr 23, 2021
Quay Au, Julia Herbinger, Clemens Stachl, Bernd Bischl, Giuseppe Casalicchio


  Access Paper or Ask Questions

deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression


Apr 06, 2021
David R├╝gamer, Ruolin Shen, Christina Bukas, Lisa Barros de Andrade e Sousa, Dominik Thalmeier, Nadja Klein, Chris Kolb, Florian Pfisterer, Philipp Kopper, Bernd Bischl, Christian L. M├╝ller


  Access Paper or Ask Questions

Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features


Apr 01, 2021
Florian Pargent, Florian Pfisterer, Janek Thomas, Bernd Bischl


  Access Paper or Ask Questions

Deep Semi-Supervised Learning for Time Series Classification


Feb 06, 2021
Jann Goschenhofer, Rasmus Hvingelby, David R├╝gamer, Janek Thomas, Moritz Wagner, Bernd Bischl


  Access Paper or Ask Questions

Semi-Structured Deep Piecewise Exponential Models


Nov 11, 2020
Philipp Kopper, Sebastian P├Âlsterl, Christian Wachinger, Bernd Bischl, Andreas Bender, David R├╝gamer

* 8 pages, 3 figures 

  Access Paper or Ask Questions

Debiasing classifiers: is reality at variance with expectation?


Nov 04, 2020
Ashrya Agrawal, Florian Pfisterer, Bernd Bischl, Jiahao Chen, Srijan Sood, Sameena Shah, Francois Buet-Golfouse, Bilal A Mateen, Sebastian Vollmer

* 11 pages, under review 

  Access Paper or Ask Questions

Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges


Oct 19, 2020
Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl


  Access Paper or Ask Questions

Neural Mixture Distributional Regression


Oct 14, 2020
David R├╝gamer, Florian Pfisterer, Bernd Bischl


  Access Paper or Ask Questions

Symplectic Gaussian Process Regression of Hamiltonian Flow Maps


Sep 11, 2020
Katharina Rath, Christopher G. Albert, Bernd Bischl, Udo von Toussaint

* 24 pages, 9 figures 

  Access Paper or Ask Questions

mlr3proba: Machine Learning Survival Analysis in R


Aug 18, 2020
Raphael Sonabend, Franz J. Király, Andreas Bender, Bernd Bischl, Michel Lang

* Submitted to JMLR 

  Access Paper or Ask Questions

Relative Feature Importance


Jul 16, 2020
Gunnar K├Ânig, Christoph Molnar, Bernd Bischl, Moritz Grosse-Wentrup


  Access Paper or Ask Questions

Pitfalls to Avoid when Interpreting Machine Learning Models


Jul 08, 2020
Christoph Molnar, Gunnar K├Ânig, Julia Herbinger, Timo Freiesleben, Susanne Dandl, Christian A. Scholbeck, Giuseppe Casalicchio, Moritz Grosse-Wentrup, Bernd Bischl

* This article was accepted at the ICML 2020 workshop XXAI: Extending Explainable AI Beyond Deep Models and Classifiers (see http://interpretable-ml.org/icml2020workshop/

  Access Paper or Ask Questions

A General Machine Learning Framework for Survival Analysis


Jun 27, 2020
Andreas Bender, David R├╝gamer, Fabian Scheipl, Bernd Bischl

* Accepted at ECML PKDD 2020, Research Track 

  Access Paper or Ask Questions

Model-agnostic Feature Importance and Effects with Dependent Features -- A Conditional Subgroup Approach


Jun 08, 2020
Christoph Molnar, Gunnar K├Ânig, Bernd Bischl, Giuseppe Casalicchio


  Access Paper or Ask Questions

Multi-Objective Counterfactual Explanations


Apr 23, 2020
Susanne Dandl, Christoph Molnar, Martin Binder, Bernd Bischl


  Access Paper or Ask Questions

Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles


Feb 13, 2020
Martin Binder, Julia Moosbauer, Janek Thomas, Bernd Bischl


  Access Paper or Ask Questions

Model-Agnostic Approaches to Multi-Objective Simultaneous Hyperparameter Tuning and Feature Selection


Dec 30, 2019
Martin Binder, Julia Moosbauer, Janek Thomas, Bernd Bischl


  Access Paper or Ask Questions

Benchmarking time series classification -- Functional data vs machine learning approaches


Nov 18, 2019
Florian Pfisterer, Laura Beggel, Xudong Sun, Fabian Scheipl, Bernd Bischl


  Access Paper or Ask Questions

Towards Human Centered AutoML


Nov 06, 2019
Florian Pfisterer, Janek Thomas, Bernd Bischl

* 4 pages 

  Access Paper or Ask Questions

Tutorial and Survey on Probabilistic Graphical Model and Variational Inference in Deep Reinforcement Learning


Oct 04, 2019
Xudong Sun, Bernd Bischl


  Access Paper or Ask Questions

Multi-Objective Automatic Machine Learning with AutoxgboostMC


Aug 28, 2019
Florian Pfisterer, Stefan Coors, Janek Thomas, Bernd Bischl

* Accepted at ECMLPKDD WORKSHOP ON AUTOMATING DATA SCIENCE 

  Access Paper or Ask Questions

An Open Source AutoML Benchmark


Jul 01, 2019
Pieter Gijsbers, Erin LeDell, Janek Thomas, S├ębastien Poirier, Bernd Bischl, Joaquin Vanschoren

* Accepted paper at the AutoML Workshop at ICML 2019. Code: https://github.com/openml/automlbenchmark/ Accompanying website: https://openml.github.io/automlbenchmark/ 

  Access Paper or Ask Questions

Resampling-based Assessment of Robustness to Distribution Shift for Deep Neural Networks


Jun 07, 2019
Xudong Sun, Yu Wang, Alexej Gossmann, Bernd Bischl


  Access Paper or Ask Questions