Abstract:Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
Abstract:Deep learning has shown remarkable progress in medical image semantic segmentation, yet its success heavily depends on large-scale expert annotations and consistent data distributions. In practice, annotations are scarce, and images are collected from multiple scanners or centers, leading to mixed-domain settings with unknown domain labels and severe domain gaps. Existing semi-supervised or domain adaptation approaches typically assume either a single domain shift or access to explicit domain indices, which rarely hold in real-world deployment. In this paper, we propose a domain-invariant mixed-domain semi-supervised segmentation framework that jointly enhances data diversity and mitigates domain bias. A Copy-Paste Mechanism (CPM) augments the training set by transferring informative regions across domains, while a Cluster Maximum Mean Discrepancy (CMMD) block clusters unlabeled features and aligns them with labeled anchors via an MMD objective, encouraging domain-invariant representations. Integrated within a teacher-student framework, our method achieves robust and precise segmentation even with very few labeled examples and multiple unknown domain discrepancies. Experiments on Fundus and M&Ms benchmarks demonstrate that our approach consistently surpasses semi-supervised and domain adaptation methods, establishing a potential solution for mixed-domain semi-supervised medical image segmentation.