Abstract:Convex relaxations have emerged as a promising approach for verifying desirable properties of neural networks like robustness to adversarial perturbations. Widely used Linear Programming (LP) relaxations only work well when networks are trained to facilitate verification. This precludes applications that involve verification-agnostic networks, i.e., networks not specially trained for verification. On the other hand, semidefinite programming (SDP) relaxations have successfully be applied to verification-agnostic networks, but do not currently scale beyond small networks due to poor time and space asymptotics. In this work, we propose a first-order dual SDP algorithm that (1) requires memory only linear in the total number of network activations, (2) only requires a fixed number of forward/backward passes through the network per iteration. By exploiting iterative eigenvector methods, we express all solver operations in terms of forward and backward passes through the network, enabling efficient use of hardware like GPUs/TPUs. For two verification-agnostic networks on MNIST and CIFAR-10, we significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively. We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
Abstract:Correctly evaluating defenses against adversarial examples has proven to be extremely difficult. Despite the significant amount of recent work attempting to design defenses that withstand adaptive attacks, few have succeeded; most papers that propose defenses are quickly shown to be incorrect. We believe a large contributing factor is the difficulty of performing security evaluations. In this paper, we discuss the methodological foundations, review commonly accepted best practices, and suggest new methods for evaluating defenses to adversarial examples. We hope that both researchers developing defenses as well as readers and reviewers who wish to understand the completeness of an evaluation consider our advice in order to avoid common pitfalls.
Abstract:The NIPS 2018 Adversarial Vision Challenge is a competition to facilitate measurable progress towards robust machine vision models and more generally applicable adversarial attacks. This document is an updated version of our competition proposal that was accepted in the competition track of 32nd Conference on Neural Information Processing Systems (NIPS 2018).
Abstract:Adversarial examples are perturbed inputs designed to fool machine learning models. Adversarial training injects such examples into training data to increase robustness. To scale this technique to large datasets, perturbations are crafted using fast single-step methods that maximize a linear approximation of the model's loss. We show that this form of adversarial training converges to a degenerate global minimum, wherein small curvature artifacts near the data points obfuscate a linear approximation of the loss. The model thus learns to generate weak perturbations, rather than defend against strong ones. As a result, we find that adversarial training remains vulnerable to black-box attacks, where we transfer perturbations computed on undefended models, as well as to a powerful novel single-step attack that escapes the non-smooth vicinity of the input data via a small random step. We further introduce Ensemble Adversarial Training, a technique that augments training data with perturbations transferred from other models. On ImageNet, Ensemble Adversarial Training yields models with strong robustness to black-box attacks. In particular, our most robust model won the first round of the NIPS 2017 competition on Defenses against Adversarial Attacks.
Abstract:CleverHans is a software library that provides standardized reference implementations of adversarial example construction techniques and adversarial training. The library may be used to develop more robust machine learning models and to provide standardized benchmarks of models' performance in the adversarial setting. Benchmarks constructed without a standardized implementation of adversarial example construction are not comparable to each other, because a good result may indicate a robust model or it may merely indicate a weak implementation of the adversarial example construction procedure. This technical report is structured as follows. Section 1 provides an overview of adversarial examples in machine learning and of the CleverHans software. Section 2 presents the core functionalities of the library: namely the attacks based on adversarial examples and defenses to improve the robustness of machine learning models to these attacks. Section 3 describes how to report benchmark results using the library. Section 4 describes the versioning system.
Abstract:To accelerate research on adversarial examples and robustness of machine learning classifiers, Google Brain organized a NIPS 2017 competition that encouraged researchers to develop new methods to generate adversarial examples as well as to develop new ways to defend against them. In this chapter, we describe the structure and organization of the competition and the solutions developed by several of the top-placing teams.
Abstract:In this paper, we develop improved techniques for defending against adversarial examples at scale. First, we implement the state of the art version of adversarial training at unprecedented scale on ImageNet and investigate whether it remains effective in this setting - an important open scientific question (Athalye et al., 2018). Next, we introduce enhanced defenses using a technique we call logit pairing, a method that encourages logits for pairs of examples to be similar. When applied to clean examples and their adversarial counterparts, logit pairing improves accuracy on adversarial examples over vanilla adversarial training; we also find that logit pairing on clean examples only is competitive with adversarial training in terms of accuracy on two datasets. Finally, we show that adversarial logit pairing achieves the state of the art defense on ImageNet against PGD white box attacks, with an accuracy improvement from 1.5% to 27.9%. Adversarial logit pairing also successfully damages the current state of the art defense against black box attacks on ImageNet (Tramer et al., 2018), dropping its accuracy from 66.6% to 47.1%. With this new accuracy drop, adversarial logit pairing ties with Tramer et al.(2018) for the state of the art on black box attacks on ImageNet.
Abstract:Most existing machine learning classifiers are highly vulnerable to adversarial examples. An adversarial example is a sample of input data which has been modified very slightly in a way that is intended to cause a machine learning classifier to misclassify it. In many cases, these modifications can be so subtle that a human observer does not even notice the modification at all, yet the classifier still makes a mistake. Adversarial examples pose security concerns because they could be used to perform an attack on machine learning systems, even if the adversary has no access to the underlying model. Up to now, all previous work have assumed a threat model in which the adversary can feed data directly into the machine learning classifier. This is not always the case for systems operating in the physical world, for example those which are using signals from cameras and other sensors as an input. This paper shows that even in such physical world scenarios, machine learning systems are vulnerable to adversarial examples. We demonstrate this by feeding adversarial images obtained from cell-phone camera to an ImageNet Inception classifier and measuring the classification accuracy of the system. We find that a large fraction of adversarial examples are classified incorrectly even when perceived through the camera.
Abstract:Adversarial examples are malicious inputs designed to fool machine learning models. They often transfer from one model to another, allowing attackers to mount black box attacks without knowledge of the target model's parameters. Adversarial training is the process of explicitly training a model on adversarial examples, in order to make it more robust to attack or to reduce its test error on clean inputs. So far, adversarial training has primarily been applied to small problems. In this research, we apply adversarial training to ImageNet. Our contributions include: (1) recommendations for how to succesfully scale adversarial training to large models and datasets, (2) the observation that adversarial training confers robustness to single-step attack methods, (3) the finding that multi-step attack methods are somewhat less transferable than single-step attack methods, so single-step attacks are the best for mounting black-box attacks, and (4) resolution of a "label leaking" effect that causes adversarially trained models to perform better on adversarial examples than on clean examples, because the adversarial example construction process uses the true label and the model can learn to exploit regularities in the construction process.