Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

On the Metrics for Evaluating Monocular Depth Estimation


Feb 20, 2023
Akhil Gurram, Antonio M. Lopez

Add code

* 11 pages, 8 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

LoopDA: Constructing Self-loops to Adapt Nighttime Semantic Segmentation


Nov 21, 2022
Fengyi Shen, Zador Pataki, Akhil Gurram, Ziyuan Liu, He Wang, Alois Knoll

Add code

* 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 
* Accepted to WACV2023 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

TridentAdapt: Learning Domain-invariance via Source-Target Confrontation and Self-induced Cross-domain Augmentation


Nov 30, 2021
Fengyi Shen, Akhil Gurram, Ahmet Faruk Tuna, Onay Urfalioglu, Alois Knoll

Add code

* Accepted to BMVC2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision


Mar 22, 2021
Akhil Gurram, Ahmet Faruk Tuna, Fengyi Shen, Onay Urfalioglu, Antonio M. L贸pez

Add code

* 12 pages, 8 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Multimodal End-to-End Autonomous Driving


Jun 07, 2019
Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, Antonio M. L贸pez

Add code

* 15 pages, 5 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Monocular Depth Estimation by Learning from Heterogeneous Datasets


Sep 12, 2018
Akhil Gurram, Onay Urfalioglu, Ibrahim Halfaoui, Fahd Bouzaraa, Antonio M. Lopez

Add code

* Accepted in IEEE-Intelligent Vehicles Symposium, IV'2018 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email