Abstract:The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
Abstract:Gaze target detection (GTD) is the task of predicting where a person in an image is looking. This is a challenging task, as it requires the ability to understand the relationship between the person's head, body, and eyes, as well as the surrounding environment. In this paper, we propose a novel method for GTD that fuses multiple pieces of information extracted from an image. First, we project the 2D image into a 3D representation using monocular depth estimation. We then extract a depth-infused saliency module map, which highlights the most salient (\textit{attention-grabbing}) regions in image for the subject in consideration. We also extract face and depth modalities from the image, and finally fuse all the extracted modalities to identify the gaze target. We quantitatively evaluated our method, including the ablation analysis on three publicly available datasets, namely VideoAttentionTarget, GazeFollow and GOO-Real, and showed that it outperforms other state-of-the-art methods. This suggests that our method is a promising new approach for GTD.
Abstract:Traffic congestion has been a major challenge in many urban road networks. Extensive research studies have been conducted to highlight traffic-related congestion and address the issue using data-driven approaches. Currently, most traffic congestion analyses are done using simulation software that offers limited insight due to the limitations in the tools and utilities being used to render various traffic congestion scenarios. All that impacts the formulation of custom business problems which vary from place to place and country to country. By exploiting the power of the knowledge graph, we model a traffic congestion problem into the Neo4j graph and then use the load balancing, optimization algorithm to identify congestion-free road networks. We also show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads. We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion. Our results show that graph-based traffic simulation, supplemented by AI ML-based traffic prediction can be more effective in estimating the congestion level in a road network.