Alert button
Picture for Adrien Escande

Adrien Escande

Alert button

CNRS-AIST JRL

The hierarchical Newton's method for numerically stable prioritized dynamic control

Mar 08, 2023
Kai Pfeiffer, Adrien Escande, Pierre Gergondet, Abderrahmane Kheddar

Figure 1 for The hierarchical Newton's method for numerically stable prioritized dynamic control
Figure 2 for The hierarchical Newton's method for numerically stable prioritized dynamic control
Figure 3 for The hierarchical Newton's method for numerically stable prioritized dynamic control
Figure 4 for The hierarchical Newton's method for numerically stable prioritized dynamic control

This work links optimization approaches from hierarchical least-squares programming to instantaneous prioritized whole-body robot control. Concretely, we formulate the hierarchical Newton's method which solves prioritized non-linear least-squares problems in a numerically stable fashion even in the presence of kinematic and algorithmic singularities of the approximated kinematic constraints. These results are then transferred to control problems which exhibit the additional variability of time. This is necessary in order to formulate acceleration based controllers and to incorporate the second order dynamics. However, we show that the Newton's method without complicated adaptations is not appropriate in the acceleration domain. We therefore formulate a velocity based controller which exhibits second order proportional derivative convergence characteristics. Our developments are verified in toy robot control scenarios as well as in complex robot experiments which stress the importance of prioritized control and its singularity resolution.

Viaarxiv icon

Optimization-Based Control for Dynamic Legged Robots

Nov 21, 2022
Patrick M. Wensing, Michael Posa, Yue Hu, Adrien Escande, Nicolas Mansard, Andrea Del Prete

Figure 1 for Optimization-Based Control for Dynamic Legged Robots
Figure 2 for Optimization-Based Control for Dynamic Legged Robots
Figure 3 for Optimization-Based Control for Dynamic Legged Robots
Figure 4 for Optimization-Based Control for Dynamic Legged Robots

In a world designed for legs, quadrupeds, bipeds, and humanoids have the opportunity to impact emerging robotics applications from logistics, to agriculture, to home assistance. The goal of this survey is to cover the recent progress toward these applications that has been driven by model-based optimization for the real-time generation and control of movement. The majority of the research community has converged on the idea of generating locomotion control laws by solving an optimal control problem (OCP) in either a model-based or data-driven manner. However, solving the most general of these problems online remains intractable due to complexities from intermittent unidirectional contacts with the environment, and from the many degrees of freedom of legged robots. This survey covers methods that have been pursued to make these OCPs computationally tractable, with specific focus on how environmental contacts are treated, how the model can be simplified, and how these choices affect the numerical solution methods employed. The survey focuses on model-based optimization, covering its recent use in a stand alone fashion, and suggesting avenues for combination with learning-based formulations to further accelerate progress in this growing field.

* submitted for initial review; comments welcome 
Viaarxiv icon

$\mathcal{N}$IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs

Jun 25, 2021
Kai Pfeiffer, Adrien Escande, Ludovic Righetti

Figure 1 for $\mathcal{N}$IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs
Figure 2 for $\mathcal{N}$IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs
Figure 3 for $\mathcal{N}$IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs
Figure 4 for $\mathcal{N}$IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs

Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority hierarchy levels. Active-set methods (ASM) are a popular choice for solving them. However, they can perform poorly in terms of computational time if there are large changes of the active set. We therefore propose a computationally efficient primal-dual interior-point method (IPM) for HLSP's which is able to maintain constant numbers of solver iterations in these situations. We base our IPM on the null-space method which requires only a single decomposition per Newton iteration instead of two as it is the case for other IPM solvers. After a priority level has converged we compose a set of active constraints judging upon the dual and project lower priority levels into their null-space. We show that the IPM-HLSP can be expressed in least-squares form which avoids the formation of the quadratic Karush-Kuhn-Tucker (KKT) Hessian. Due to our choice of the null-space basis the IPM-HLSP is as fast as the state-of-the-art ASM-HLSP solver for equality only problems.

* 17 pages, 7 figures 
Viaarxiv icon

Capturability-based Pattern Generation for Walking with Variable Height

Oct 25, 2018
Stéphane Caron, Adrien Escande, Leonardo Lanari, Bastien Mallein

Figure 1 for Capturability-based Pattern Generation for Walking with Variable Height
Figure 2 for Capturability-based Pattern Generation for Walking with Variable Height
Figure 3 for Capturability-based Pattern Generation for Walking with Variable Height
Figure 4 for Capturability-based Pattern Generation for Walking with Variable Height

Capturability analysis of the linear inverted pendulum (LIP) model enabled walking with constrained height based on the capture point. We generalize this analysis to the variable-height inverted pendulum (VHIP) and show how it enables 3D walking over uneven terrains based on capture inputs. Thanks to a tailored optimization scheme, we can compute these inputs fast enough for real-time model predictive control. We implement this approach as open-source software and demonstrate it in dynamic simulations.

* Submitted 
Viaarxiv icon

Quotient-Space Motion Planning

Aug 03, 2018
Andreas Orthey, Adrien Escande, Eiichi Yoshida

Figure 1 for Quotient-Space Motion Planning
Figure 2 for Quotient-Space Motion Planning
Figure 3 for Quotient-Space Motion Planning
Figure 4 for Quotient-Space Motion Planning

A motion planning algorithm computes the motion of a robot by computing a path through its configuration space. To improve the runtime of motion planning algorithms, we propose to nest robots in each other, creating a nested quotient-space decomposition of the configuration space. Based on this decomposition we define a new roadmap-based motion planning algorithm called the Quotient-space roadMap Planner (QMP). The algorithm starts growing a graph on the lowest dimensional quotient space, switches to the next quotient space once a valid path has been found, and keeps updating the graphs on each quotient space simultaneously until a valid path in the configuration space has been found. We show that this algorithm is probabilistically complete and outperforms a set of state-of-the-art algorithms implemented in the open motion planning library (OMPL).

* IROS 2018 - International Conference on Intelligent Robots and Systems, Oct 2018, Madrid, Spain. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems  
Viaarxiv icon

Identification of Fully Physical Consistent Inertial Parameters using Optimization on Manifolds

Oct 27, 2016
Silvio Traversaro, Stanislas Brossette, Adrien Escande, Francesco Nori

Figure 1 for Identification of Fully Physical Consistent Inertial Parameters using Optimization on Manifolds
Figure 2 for Identification of Fully Physical Consistent Inertial Parameters using Optimization on Manifolds

This paper presents a new condition, the fully physical consistency for a set of inertial parameters to determine if they can be generated by a physical rigid body. The proposed condition ensure both the positive definiteness and the triangular inequality of 3D inertia matrices as opposed to existing techniques in which the triangular inequality constraint is ignored. This paper presents also a new parametrization that naturally ensures that the inertial parameters are fully physical consistency. The proposed parametrization is exploited to reformulate the inertial identification problem as a manifold optimization problem, that ensures that the identified parameters can always be generated by a physical body. The proposed optimization problem has been validated with a set of experiments on the iCub humanoid robot.

* 6 pages, published in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on 
Viaarxiv icon