What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
Jul 03, 2025
Abstract:This study presents an approach for collecting speech samples to build Automatic Speech Recognition (ASR) models for impaired speech, particularly, low-resource languages. It aims to democratize ASR technology and data collection by developing a "cookbook" of best practices and training for community-driven data collection and ASR model building. As a proof-of-concept, this study curated the first open-source dataset of impaired speech in Akan: a widely spoken indigenous language in Ghana. The study involved participants from diverse backgrounds with speech impairments. The resulting dataset, along with the cookbook and open-source tools, are publicly available to enable researchers and practitioners to create inclusive ASR technologies tailored to the unique needs of speech impaired individuals. In addition, this study presents the initial results of fine-tuning open-source ASR models to better recognize impaired speech in Akan.
* This version has been reviewed and accepted for presentation at the
InterSpeech 2025 conference to be held in Rotterdam from 17 to 21 August. 5
pages and 3 tables
Via

Jul 03, 2025
Abstract:Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
* This version has been reviewed and accepted for presentation at the
Future Technologies Conference (FTC) 2025, to be held on 6 & 7 November 2025
in Munich, Germany. 17 pages, 4 figures, 1 table
Via

Jul 03, 2025
Abstract:We present an open-source system designed for multilingual translation and speech regeneration, addressing challenges in communication and accessibility across diverse linguistic contexts. The system integrates Whisper for speech recognition with Voice Activity Detection (VAD) to identify speaking intervals, followed by a pipeline of Large Language Models (LLMs). For multilingual applications, the first LLM segments speech into coherent, complete sentences, which a second LLM then translates. For speech regeneration, the system uses a text-to-speech (TTS) module with voice cloning capabilities to replicate the original speaker's voice, maintaining naturalness and speaker identity. The system's open-source components can operate locally or via APIs, offering cost-effective deployment across various use cases. These include real-time multilingual translation in Zoom sessions, speech regeneration for public broadcasts, and Bluetooth-enabled multilingual playback through personal devices. By preserving the speaker's voice, the system ensures a seamless and immersive experience, whether translating or regenerating speech. This open-source project is shared with the community to foster innovation and accessibility. We provide a detailed system performance analysis, including latency and word accuracy, demonstrating its potential to enable inclusive, adaptable communication solutions in real-world multilingual scenarios.
* Presented at Forum Acusticum Euronoise 2025
Via

Jul 02, 2025
Abstract:In recent years, neural models trained on large multilingual text and speech datasets have shown great potential for supporting low-resource languages. This study investigates the performances of two state-of-the-art Automatic Speech Recognition (ASR) models, OpenAI's Whisper (Small & Large-V2) and Facebook's Wav2Vec-BERT on Bangla, a low-resource language. We have conducted experiments using two publicly available datasets: Mozilla Common Voice-17 and OpenSLR to evaluate model performances. Through systematic fine-tuning and hyperparameter optimization, including learning rate, epochs, and model checkpoint selection, we have compared the models based on Word Error Rate (WER), Character Error Rate (CER), Training Time, and Computational Efficiency. The Wav2Vec-BERT model outperformed Whisper across all key evaluation metrics, demonstrated superior performance while requiring fewer computational resources, and offered valuable insights to develop robust speech recognition systems in low-resource linguistic settings.
Via

Jul 02, 2025
Abstract:Traditional simulator-based training for maritime professionals is critical for ensuring safety at sea but often depends on subjective trainer assessments of technical skills, behavioral focus, communication, and body language, posing challenges such as subjectivity, difficulty in measuring key features, and cognitive limitations. Addressing these issues, this study develops an AI-driven framework to enhance maritime training by objectively assessing trainee performance through visual focus tracking, speech recognition, and stress detection, improving readiness for high-risk scenarios. The system integrates AI techniques, including visual focus determination using eye tracking, pupil dilation analysis, and computer vision; communication analysis through a maritime-specific speech-to-text model and natural language processing; communication correctness using large language models; and mental stress detection via vocal pitch. Models were evaluated on data from simulated maritime scenarios with seafarers exposed to controlled high-stress events. The AI algorithms achieved high accuracy, with ~92% for visual detection, ~91% for maritime speech recognition, and ~90% for stress detection, surpassing existing benchmarks. The system provides insights into visual attention, adherence to communication checklists, and stress levels under demanding conditions. This study demonstrates how AI can transform maritime training by delivering objective performance analytics, enabling personalized feedback, and improving preparedness for real-world operational challenges.
* Accepted and Presented at 11th International Maritime Science
Conference
Via

Jul 02, 2025
Abstract:The goal of voice anonymization is to modify an audio such that the true identity of its speaker is hidden. Research on this task is typically limited to the same English read speech datasets, thus the efficacy of current methods for other types of speech data remains unknown. In this paper, we present the first investigation of voice anonymization for the multilingual phenomenon of code-switching speech. We prepare two corpora for this task and propose adaptations to a multilingual anonymization model to make it applicable for code-switching speech. By testing the anonymization performance of this and two language-independent methods on the datasets, we find that only the multilingual system performs well in terms of privacy and utility preservation. Furthermore, we observe challenges in performing utility evaluations on this data because of its spontaneous character and the limited code-switching support by the multilingual speech recognition model.
* accepted at Interspeech 2025
Via

Jul 02, 2025
Abstract:We introduce Generalized Test-Time Augmentation (GTTA), a highly effective method for improving the performance of a trained model, which unlike other existing Test-Time Augmentation approaches from the literature is general enough to be used off-the-shelf for many vision and non-vision tasks, such as classification, regression, image segmentation and object detection. By applying a new general data transformation, that randomly perturbs multiple times the PCA subspace projection of a test input, GTTA forms robust ensembles at test time in which, due to sound statistical properties, the structural and systematic noises in the initial input data is filtered out and final estimator errors are reduced. Different from other existing methods, we also propose a final self-supervised learning stage in which the ensemble output, acting as an unsupervised teacher, is used to train the initial single student model, thus reducing significantly the test time computational cost, at no loss in accuracy. Our tests and comparisons to strong TTA approaches and SoTA models on various vision and non-vision well-known datasets and tasks, such as image classification and segmentation, speech recognition and house price prediction, validate the generality of the proposed GTTA. Furthermore, we also prove its effectiveness on the more specific real-world task of salmon segmentation and detection in low-visibility underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature.
Via

Jul 02, 2025
Abstract:Deep neural networks (DNNs) have become ubiquitous thanks to their remarkable ability to model complex patterns across various domains such as computer vision, speech recognition, robotics, etc. While large DNN models are often more accurate than simpler, lightweight models, they are also resource- and energy-hungry. Hence, it is imperative to design methods to reduce reliance on such large models without significant degradation in output accuracy. The high computational cost of these models is often necessary only for a reduced set of challenging inputs, while lighter models can handle most simple ones. Thus, carefully combining properties of existing DNN models in a dynamic, input-based way opens opportunities to improve efficiency without impacting accuracy. In this work, we introduce PERTINENCE, a novel online method designed to analyze the complexity of input features and dynamically select the most suitable model from a pre-trained set to process a given input effectively. To achieve this, we employ a genetic algorithm to explore the training space of an ML-based input dispatcher, enabling convergence towards the Pareto front in the solution space that balances overall accuracy and computational efficiency. We showcase our approach on state-of-the-art Convolutional Neural Networks (CNNs) trained on the CIFAR-10 and CIFAR-100, as well as Vision Transformers (ViTs) trained on TinyImageNet dataset. We report results showing PERTINENCE's ability to provide alternative solutions to existing state-of-the-art models in terms of trade-offs between accuracy and number of operations. By opportunistically selecting among models trained for the same task, PERTINENCE achieves better or comparable accuracy with up to 36% fewer operations.
Via

Jul 01, 2025
Abstract:With the advent of new sequence models like Mamba and xLSTM, several studies have shown that these models match or outperform state-of-the-art models in single-channel speech enhancement, automatic speech recognition, and self-supervised audio representation learning. However, prior research has demonstrated that sequence models like LSTM and Mamba tend to overfit to the training set. To address this issue, previous works have shown that adding self-attention to LSTMs substantially improves generalization performance for single-channel speech enhancement. Nevertheless, neither the concept of hybrid Mamba and time-frequency attention models nor their generalization performance have been explored for speech enhancement. In this paper, we propose a novel hybrid architecture, MambAttention, which combines Mamba and shared time- and frequency-multi-head attention modules for generalizable single-channel speech enhancement. To train our model, we introduce VoiceBank+Demand Extended (VB-DemandEx), a dataset inspired by VoiceBank+Demand but with more challenging noise types and lower signal-to-noise ratios. Trained on VB-DemandEx, our proposed MambAttention model significantly outperforms existing state-of-the-art LSTM-, xLSTM-, Mamba-, and Conformer-based systems of similar complexity across all reported metrics on two out-of-domain datasets: DNS 2020 and EARS-WHAM_v2, while matching their performance on the in-domain dataset VB-DemandEx. Ablation studies highlight the role of weight sharing between the time- and frequency-multi-head attention modules for generalization performance. Finally, we explore integrating the shared time- and frequency-multi-head attention modules with LSTM and xLSTM, which yields a notable performance improvement on the out-of-domain datasets. However, our MambAttention model remains superior on both out-of-domain datasets across all reported evaluation metrics.
* Submitted to IEEE/ACM Transactions on Audio, Speech, and Language
Processing for possible publication
Via

Jun 24, 2025
Abstract:Long-form speech recognition is an application area of increasing research focus. ASR models based on multi-head attention (MHA) are ill-suited to long-form ASR because of their quadratic complexity in sequence length. We build on recent work that has investigated linear complexity recurrent attention (RA) layers for ASR. We find that bidirectional RA layers can match the accuracy of MHA for both short- and long-form applications. We present a strong limited-context attention (LCA) baseline, and show that RA layers are just as accurate while being more efficient. We develop a long-form training paradigm which further improves RA performance, leading to better accuracy than LCA with 44% higher throughput. We also present Direction Dropout, a novel regularization method that improves accuracy, provides fine-grained control of the accuracy/throughput trade-off of bidirectional RA, and enables a new alternating directions decoding mode with even higher throughput.
* Accepted to Interspeech 2025
Via
