This paper proposes a policy-based deep reinforcement learning hyper-heuristic framework for solving the Job Shop Scheduling Problem. The hyper-heuristic agent learns to switch scheduling rules based on the system state dynamically. We extend the hyper-heuristic framework with two key mechanisms. First, action prefiltering restricts decision-making to feasible low-level actions, enabling low-level heuristics to be evaluated independently of environmental constraints and providing an unbiased assessment. Second, a commitment mechanism regulates the frequency of heuristic switching. We investigate the impact of different commitment strategies, from step-wise switching to full-episode commitment, on both training behavior and makespan. Additionally, we compare two action selection strategies at the policy level: deterministic greedy selection and stochastic sampling. Computational experiments on standard JSSP benchmarks demonstrate that the proposed approach outperforms traditional heuristics, metaheuristics, and recent neural network-based scheduling methods
With advancements in deep learning (DL) and computer vision techniques, the field of chart understanding is evolving rapidly. In particular, multimodal large language models (MLLMs) are proving to be efficient and accurate in understanding charts. To accurately measure the performance of MLLMs, the research community has developed multiple datasets to serve as benchmarks. By examining these datasets, we found that they are all limited to a small set of chart types. To bridge this gap, we propose the ChartComplete dataset. The dataset is based on a chart taxonomy borrowed from the visualization community, and it covers thirty different chart types. The dataset is a collection of classified chart images and does not include a learning signal. We present the ChartComplete dataset as is to the community to build upon it.
This study investigates the detection and classification of depressive and non-depressive states using deep learning approaches. Depression is a prevalent mental health disorder that substantially affects quality of life, and early diagnosis can greatly enhance treatment effectiveness and patient care. However, conventional diagnostic methods rely heavily on self-reported assessments, which are often subjective and may lack reliability. Consequently, there is a strong need for objective and accurate techniques to identify depressive states. In this work, a deep learning based framework is proposed for the early detection of depression using EEG signals. EEG data, which capture underlying brain activity and are not influenced by external behavioral factors, can reveal subtle neural changes associated with depression. The proposed approach combines convolutional neural networks (CNNs) and gated recurrent units (GRUs) to jointly extract spatial and temporal features from EEG recordings. The minimum redundancy maximum relevance (MRMR) algorithm is then applied to select the most informative features, followed by classification using a fully connected neural network. The results demonstrate that the proposed model achieves high performance in accurately identifying depressive states, with an overall accuracy of 98.74%. By effectively integrating temporal and spatial information and employing optimized feature selection, this method shows strong potential as a reliable tool for clinical applications. Overall, the proposed framework not only enables accurate early detection of depression but also has the potential to support improved treatment strategies and patient outcomes.
Deep learning has significantly advanced image analysis across diverse domains but often depends on large, annotated datasets for success. Transfer learning addresses this challenge by utilizing pre-trained models to tackle new tasks with limited labeled data. However, discrepancies between source and target domains can hinder effective transfer learning. We introduce BioTune, a novel adaptive fine-tuning technique utilizing evolutionary optimization. BioTune enhances transfer learning by optimally choosing which layers to freeze and adjusting learning rates for unfrozen layers. Through extensive evaluation on nine image classification datasets, spanning natural and specialized domains such as medical imaging, BioTune demonstrates superior accuracy and efficiency over state-of-the-art fine-tuning methods, including AutoRGN and LoRA, highlighting its adaptability to various data characteristics and distribution changes. Additionally, BioTune consistently achieves top performance across four different CNN architectures, underscoring its flexibility. Ablation studies provide valuable insights into the impact of BioTune's key components on overall performance. The source code is available at https://github.com/davilac/BioTune.
Breast-Conserving Surgery (BCS) requires precise intraoperative margin assessment to preserve healthy tissue. Deep Ultraviolet Fluorescence Scanning Microscopy (DUV-FSM) offers rapid, high-resolution surface imaging for this purpose; however, the scarcity of annotated DUV data hinders the training of robust deep learning models. To address this, we propose an Self-Supervised Learning (SSL)-guided Latent Diffusion Model (LDM) to generate high-quality synthetic training patches. By guiding the LDM with embeddings from a fine-tuned DINO teacher, we inject rich semantic details of cellular structures into the synthetic data. We combine real and synthetic patches to fine-tune a Vision Transformer (ViT), utilizing patch prediction aggregation for WSI-level classification. Experiments using 5-fold cross-validation demonstrate that our method achieves 96.47 % accuracy and reduces the FID score to 45.72, significantly outperforming class-conditioned baselines.
Stochastic gradient descent (SGD) is central to deep learning, yet the dynamical origin of its preference for flatter, more generalizable solutions remains unclear. Here, by analyzing SGD learning dynamics, we identify a nonequilibrium mechanism governing solution selection. Numerical experiments reveal a transient exploratory phase in which SGD trajectories repeatedly escape sharp valleys and transition toward flatter regions of the loss landscape. By using a tractable physical model, we show that the SGD noise reshapes the landscape into an effective potential that favors flat solutions. Crucially, we uncover a transient freezing mechanism: as training proceeds, growing energy barriers suppress inter-valley transitions and ultimately trap the dynamics within a single basin. Increasing the SGD noise strength delays this freezing, which enhances convergence to flatter minima. Together, these results provide a unified physical framework linking learning dynamics, loss-landscape geometry, and generalization, and suggest principles for the design of more effective optimization algorithms.
Predictive Process Monitoring is a branch of process mining that aims to predict the outcome of an ongoing process. Recently, it leveraged machine-and-deep learning architectures. In this paper, we extend our prior LLM-based Predictive Process Monitoring framework, which was initially focused on total time prediction via prompting. The extension consists of comprehensively evaluating its generality, semantic leverage, and reasoning mechanisms, also across multiple Key Performance Indicators. Empirical evaluations conducted on three distinct event logs and across the Key Performance Indicators of Total Time and Activity Occurrence prediction indicate that, in data-scarce settings with only 100 traces, the LLM surpasses the benchmark methods. Furthermore, the experiments also show that the LLM exploits both its embodied prior knowledge and the internal correlations among training traces. Finally, we examine the reasoning strategies employed by the model, demonstrating that the LLM does not merely replicate existing predictive methods but performs higher-order reasoning to generate the predictions.
Accurate wetland mapping is essential for ecosystem monitoring, yet dense pixel-level annotation is prohibitively expensive and practical applications usually rely on sparse point labels, under which existing deep learning models perform poorly, while strong seasonal and inter-annual wetland dynamics further render single-date imagery inadequate and lead to significant mapping errors; although foundation models such as SAM show promising generalization from point prompts, they are inherently designed for static images and fail to model temporal information, resulting in fragmented masks in heterogeneous wetlands. To overcome these limitations, we propose WetSAM, a SAM-based framework that integrates satellite image time series for wetland mapping from sparse point supervision through a dual-branch design, where a temporally prompted branch extends SAM with hierarchical adapters and dynamic temporal aggregation to disentangle wetland characteristics from phenological variability, and a spatial branch employs a temporally constrained region-growing strategy to generate reliable dense pseudo-labels, while a bidirectional consistency regularization jointly optimizes both branches. Extensive experiments across eight global regions of approximately 5,000 km2 each demonstrate that WetSAM substantially outperforms state-of-the-art methods, achieving an average F1-score of 85.58%, and delivering accurate and structurally consistent wetland segmentation with minimal labeling effort, highlighting its strong generalization capability and potential for scalable, low-cost, high-resolution wetland mapping.
Deep neural networks constructed from linear maps and positively homogeneous nonlinearities (e.g., ReLU) possess a fundamental gauge symmetry: the network function is invariant to node-wise diagonal rescalings. However, standard gradient descent is not equivariant to this symmetry, causing optimization trajectories to depend heavily on arbitrary parameterizations. Prior work has proposed rescaling-invariant optimization schemes for positively homogeneous networks (e.g., path-based or path-space updates). Our contribution is complementary: we formulate the invariance requirement at the level of the backward adjoint/optimization geometry, which provides a simple, operator-level recipe that can be applied uniformly across network components and optimizer state. By replacing the Euclidean transpose with a Unit-Consistent (UC) adjoint, we derive UC gauge-consistent steepest descent and backprogation.
Images captured in hazy and smoky environments suffer from reduced visibility, posing a challenge when monitoring infrastructures and hindering emergency services during critical situations. The proposed work investigates the use of the deep learning models to enhance the automatic, machine-based readability of gauge in smoky environments, with accurate gauge data interpretation serving as a valuable tool for first responders. The study utilizes two deep learning architectures, FFA-Net and AECR-Net, to improve the visibility of gauge images, corrupted with light up to dense haze and smoke. Since benchmark datasets of analog gauge images are unavailable, a new synthetic dataset, containing over 14,000 images, was generated using the Unreal Engine. The models were trained with an 80\% train, 10\% validation, and 10\% test split for the haze and smoke dataset, respectively. For the synthetic haze dataset, the SSIM and PSNR metrics are about 0.98 and 43\,dB, respectively, comparing well to state-of-the art results. Additionally, more robust results are retrieved from the AECR-Net, when compared to the FFA-Net. Although the results from the synthetic smoke dataset are poorer, the trained models achieve interesting results. In general, imaging in the presence of smoke are more difficult to enhance given the inhomogeneity and high density. Secondly, FFA-Net and AECR-Net are implemented to dehaze and not to desmoke images. This work shows that use of deep learning architectures can improve the quality of analog gauge images captured in smoke and haze scenes immensely. Finally, the enhanced output images can be successfully post-processed for automatic autonomous reading of gauges