Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:Fine-tuning language models (LMs) with the Adam optimizer often demands excessive memory, limiting accessibility. The "in-place" version of Stochastic Gradient Descent (IP-SGD) and Memory-Efficient Zeroth-order Optimizer (MeZO) have been proposed to address this. However, IP-SGD still requires substantial memory, and MeZO suffers from slow convergence and degraded final performance due to its zeroth-order nature. This paper introduces Addax, a novel method that improves both memory efficiency and performance of IP-SGD by integrating it with MeZO. Specifically, Addax computes zeroth- or first-order gradients of data points in the minibatch based on their memory consumption, combining these gradient estimates to update directions. By computing zeroth-order gradients for data points that require more memory and first-order gradients for others, Addax overcomes the slow convergence of MeZO and the excessive memory requirement of IP-SGD. Additionally, the zeroth-order gradient acts as a regularizer for the first-order gradient, further enhancing the model's final performance. Theoretically, we establish the convergence of Addax under mild assumptions, demonstrating faster convergence and less restrictive hyper-parameter choices than MeZO. Our experiments with diverse LMs and tasks show that Addax consistently outperforms MeZO regarding accuracy and convergence speed while having a comparable memory footprint. When fine-tuning OPT-13B with one A100 GPU, on average, Addax outperforms MeZO in accuracy/F1 score by 14% and runs 15x faster while using memory similar to MeZO. In our experiments on the larger OPT-30B model, on average, Addax outperforms MeZO in terms of accuracy/F1 score by >16 and runs 30x faster on a single H100 GPU. Moreover, Addax surpasses the performance of standard fine-tuning approaches, such as IP-SGD and Adam, in most tasks with significantly less memory requirement.

Via

Authors:Rudrajit Das, Inderjit S. Dhillon, Alessandro Epasto, Adel Javanmard, Jieming Mao, Vahab Mirrokni, Sujay Sanghavi, Peilin Zhong

Abstract:The performance of a model trained with \textit{noisy labels} is often improved by simply \textit{retraining} the model with its own predicted \textit{hard} labels (i.e., $1$/$0$ labels). Yet, a detailed theoretical characterization of this phenomenon is lacking. In this paper, we theoretically analyze retraining in a linearly separable setting with randomly corrupted labels given to us and prove that retraining can improve the population accuracy obtained by initially training with the given (noisy) labels. To the best of our knowledge, this is the first such theoretical result. Retraining finds application in improving training with label differential privacy (DP) which involves training with noisy labels. We empirically show that retraining selectively on the samples for which the predicted label matches the given label significantly improves label DP training at \textit{no extra privacy cost}; we call this \textit{consensus-based retraining}. For e.g., when training ResNet-18 on CIFAR-100 with $\epsilon=3$ label DP, we obtain $6.4\%$ improvement in accuracy with consensus-based retraining.

Via

Abstract:We revisit the input perturbations framework for differential privacy where noise is added to the input $A\in \mathcal{S}$ and the result is then projected back to the space of admissible datasets $\mathcal{S}$. Through this framework, we first design novel efficient algorithms to privately release pair-wise cosine similarities. Second, we derive a novel algorithm to compute $k$-way marginal queries over $n$ features. Prior work could achieve comparable guarantees only for $k$ even. Furthermore, we extend our results to $t$-sparse datasets, where our efficient algorithms yields novel, stronger guarantees whenever $t\le n^{5/6}/\log n\,.$ Finally, we provide a theoretical perspective on why \textit{fast} input perturbation algorithms works well in practice. The key technical ingredients behind our results are tight sum-of-squares certificates upper bounding the Gaussian complexity of sets of solutions.

Via

Abstract:The quadratic complexity of attention in transformer architectures remains a big bottleneck in scaling up large foundation models for long context. In fact, recent theoretical results show the hardness of approximating the output of softmax attention mechanism in sub-quadratic time assuming Strong Exponential Time Hypothesis. In this paper, we show how to break this theoretical barrier by replacing softmax with a polynomial function and polynomial sketching. In particular we show that sketches for Polynomial Kernel from the randomized numerical linear algebra literature can be used to approximate the polynomial attention which leads to a significantly faster attention mechanism without assuming any sparse structure for the attention matrix that has been done in many previous works. In addition, we propose an efficient block-based algorithm that lets us apply the causal mask to the attention matrix without explicitly realizing the $n \times n$ attention matrix and compute the output of the polynomial attention mechanism in time linear in the context length. The block-based algorithm gives significant speedups over the \emph{cumulative sum} algorithm used by Performer to apply the causal mask to the attention matrix. These observations help us design \emph{PolySketchFormer}, a practical linear-time transformer architecture for language modeling with provable guarantees. We validate our design empirically by training language models with long context lengths. We first show that the eval perplexities of our models are comparable to that of models trained with softmax attention. We then show that for large context lengths our training times are significantly faster than FlashAttention.

Via

Abstract:The streaming model is an abstraction of computing over massive data streams, which is a popular way of dealing with large-scale modern data analysis. In this model, there is a stream of data points, one after the other. A streaming algorithm is only allowed one pass over the data stream, and the goal is to perform some analysis during the stream while using as small space as possible. Clustering problems (such as $k$-means and $k$-median) are fundamental unsupervised machine learning primitives, and streaming clustering algorithms have been extensively studied in the past. However, since data privacy becomes a central concern in many real-world applications, non-private clustering algorithms are not applicable in many scenarios. In this work, we provide the first differentially private streaming algorithms for $k$-means and $k$-median clustering of $d$-dimensional Euclidean data points over a stream with length at most $T$ using $poly(k,d,\log(T))$ space to achieve a {\it constant} multiplicative error and a $poly(k,d,\log(T))$ additive error. In particular, we present a differentially private streaming clustering framework which only requires an offline DP coreset algorithm as a blackbox. By plugging in existing DP coreset results via Ghazi, Kumar, Manurangsi 2020 and Kaplan, Stemmer 2018, we achieve (1) a $(1+\gamma)$-multiplicative approximation with $\tilde{O}_\gamma(poly(k,d,\log(T)))$ space for any $\gamma>0$, and the additive error is $poly(k,d,\log(T))$ or (2) an $O(1)$-multiplicative approximation with $\tilde{O}(k \cdot poly(d,\log(T)))$ space and $poly(k,d,\log(T))$ additive error. In addition, our algorithmic framework is also differentially private under the continual release setting, i.e., the union of outputs of our algorithms at every timestamp is always differentially private.

Via

Authors:CJ Carey, Travis Dick, Alessandro Epasto, Adel Javanmard, Josh Karlin, Shankar Kumar, Andres Munoz Medina, Vahab Mirrokni, Gabriel Henrique Nunes, Sergei Vassilvitskii(+1 more)

Abstract:Compact user representations (such as embeddings) form the backbone of personalization services. In this work, we present a new theoretical framework to measure re-identification risk in such user representations. Our framework, based on hypothesis testing, formally bounds the probability that an attacker may be able to obtain the identity of a user from their representation. As an application, we show how our framework is general enough to model important real-world applications such as the Chrome's Topics API for interest-based advertising. We complement our theoretical bounds by showing provably good attack algorithms for re-identification that we use to estimate the re-identification risk in the Topics API. We believe this work provides a rigorous and interpretable notion of re-identification risk and a framework to measure it that can be used to inform real-world applications.

Via

Abstract:A fundamental procedure in the analysis of massive datasets is the construction of similarity graphs. Such graphs play a key role for many downstream tasks, including clustering, classification, graph learning, and nearest neighbor search. For these tasks, it is critical to build graphs which are sparse yet still representative of the underlying data. The benefits of sparsity are twofold: firstly, constructing dense graphs is infeasible in practice for large datasets, and secondly, the runtime of downstream tasks is directly influenced by the sparsity of the similarity graph. In this work, we present $\textit{Stars}$: a highly scalable method for building extremely sparse graphs via two-hop spanners, which are graphs where similar points are connected by a path of length at most two. Stars can construct two-hop spanners with significantly fewer similarity comparisons, which are a major bottleneck for learning based models where comparisons are expensive to evaluate. Theoretically, we demonstrate that Stars builds a graph in nearly-linear time, where approximate nearest neighbors are contained within two-hop neighborhoods. In practice, we have deployed Stars for multiple data sets allowing for graph building at the $\textit{Tera-Scale}$, i.e., for graphs with tens of trillions of edges. We evaluate the performance of Stars for clustering and graph learning, and demonstrate 10~1000-fold improvements in pairwise similarity comparisons compared to different baselines, and 2~10-fold improvement in running time without quality loss.

Via

Figures and Tables:

Abstract:Personalized PageRank (PPR) is a fundamental tool in unsupervised learning of graph representations such as node ranking, labeling, and graph embedding. However, while data privacy is one of the most important recent concerns, existing PPR algorithms are not designed to protect user privacy. PPR is highly sensitive to the input graph edges: the difference of only one edge may cause a big change in the PPR vector, potentially leaking private user data. In this work, we propose an algorithm which outputs an approximate PPR and has provably bounded sensitivity to input edges. In addition, we prove that our algorithm achieves similar accuracy to non-private algorithms when the input graph has large degrees. Our sensitivity-bounded PPR directly implies private algorithms for several tools of graph learning, such as, differentially private (DP) PPR ranking, DP node classification, and DP node embedding. To complement our theoretical analysis, we also empirically verify the practical performances of our algorithms.

Via

Figures and Tables:

Abstract:We study the column subset selection problem with respect to the entrywise $\ell_1$-norm loss. It is known that in the worst case, to obtain a good rank-$k$ approximation to a matrix, one needs an arbitrarily large $n^{\Omega(1)}$ number of columns to obtain a $(1+\epsilon)$-approximation to the best entrywise $\ell_1$-norm low rank approximation of an $n \times n$ matrix. Nevertheless, we show that under certain minimal and realistic distributional settings, it is possible to obtain a $(1+\epsilon)$-approximation with a nearly linear running time and poly$(k/\epsilon)+O(k\log n)$ columns. Namely, we show that if the input matrix $A$ has the form $A = B + E$, where $B$ is an arbitrary rank-$k$ matrix, and $E$ is a matrix with i.i.d. entries drawn from any distribution $\mu$ for which the $(1+\gamma)$-th moment exists, for an arbitrarily small constant $\gamma > 0$, then it is possible to obtain a $(1+\epsilon)$-approximate column subset selection to the entrywise $\ell_1$-norm in nearly linear time. Conversely we show that if the first moment does not exist, then it is not possible to obtain a $(1+\epsilon)$-approximate subset selection algorithm even if one chooses any $n^{o(1)}$ columns. This is the first algorithm of any kind for achieving a $(1+\epsilon)$-approximation for entrywise $\ell_1$-norm loss low rank approximation.

Via

Figures and Tables:

Abstract:We provide efficient algorithms for overconstrained linear regression problems with size $n \times d$ when the loss function is a symmetric norm (a norm invariant under sign-flips and coordinate-permutations). An important class of symmetric norms are Orlicz norms, where for a function $G$ and a vector $y \in \mathbb{R}^n$, the corresponding Orlicz norm $\|y\|_G$ is defined as the unique value $\alpha$ such that $\sum_{i=1}^n G(|y_i|/\alpha) = 1$. When the loss function is an Orlicz norm, our algorithm produces a $(1 + \varepsilon)$-approximate solution for an arbitrarily small constant $\varepsilon > 0$ in input-sparsity time, improving over the previously best-known algorithm which produces a $d \cdot \mathrm{polylog} n$-approximate solution. When the loss function is a general symmetric norm, our algorithm produces a $\sqrt{d} \cdot \mathrm{polylog} n \cdot \mathrm{mmc}(\ell)$-approximate solution in input-sparsity time, where $\mathrm{mmc}(\ell)$ is a quantity related to the symmetric norm under consideration. To the best of our knowledge, this is the first input-sparsity time algorithm with provable guarantees for the general class of symmetric norm regression problem. Our results shed light on resolving the universal sketching problem for linear regression, and the techniques might be of independent interest to numerical linear algebra problems more broadly.

Via