Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"chatbots": models, code, and papers

Lifelong Knowledge Learning in Rule-based Dialogue Systems

Nov 19, 2020
Bing Liu, Chuhe Mei

One of the main weaknesses of current chatbots or dialogue systems is that they do not learn online during conversations after they are deployed. This is a major loss of opportunity. Clearly, each human user has a great deal of knowledge about the world that may be useful to others. If a chatbot can learn from their users during chatting, it will greatly expand its knowledge base and serve its users better. This paper proposes to build such a learning capability in a rule-based chatbot so that it can continuously acquire new knowledge in its chatting with users. This work is useful because many real-life deployed chatbots are rule-based.

Access Paper or Ask Questions

Conversational agents for learning foreign languages -- a survey

Nov 16, 2020
Jasna Petrovic, Mladjan Jovanovic

Conversational practice, while crucial for all language learners, can be challenging to get enough of and very expensive. Chatbots are computer programs developed to engage in conversations with humans. They are designed as software avatars with limited, but growing conversational capability. The most natural and potentially powerful application of chatbots is in line with their fundamental nature - language practice. However, their role and outcomes within (in)formal language learning are currently tangential at best. Existing research in the area has generally focused on chatbots' comprehensibility and the motivation they inspire in their users. In this paper, we provide an overview of the chatbots for learning languages, critically analyze existing approaches, and discuss the major challenges for future work.

* Sinteza 2020 - International Scientific Conference on Information Technology and Data Related Research, Belgrade, Singidunum University, Serbia 
Access Paper or Ask Questions

FitChat: Conversational Artificial Intelligence Interventions for Encouraging Physical Activity in Older Adults

Apr 29, 2020
Nirmalie Wiratunga, Kay Cooper, Anjana Wijekoon, Chamath Palihawadana, Vanessa Mendham, Ehud Reiter, Kyle Martin

Delivery of digital behaviour change interventions which encourage physical activity has been tried in many forms. Most often interventions are delivered as text notifications, but these do not promote interaction. Advances in conversational AI have improved natural language understanding and generation, allowing AI chatbots to provide an engaging experience with the user. For this reason, chatbots have recently been seen in healthcare delivering digital interventions through free text or choice selection. In this work, we explore the use of voice-based AI chatbots as a novel mode of intervention delivery, specifically targeting older adults to encourage physical activity. We co-created "FitChat", an AI chatbot, with older adults and we evaluate the first prototype using Think Aloud Sessions. Our thematic evaluation suggests that older adults prefer voice-based chat over text notifications or free text entry and that voice is a powerful mode for encouraging motivation.

Access Paper or Ask Questions

Towards Standard Criteria for human evaluation of Chatbots: A Survey

May 24, 2021
Hongru Liang, Huaqing Li

Human evaluation is becoming a necessity to test the performance of Chatbots. However, off-the-shelf settings suffer the severe reliability and replication issues partly because of the extremely high diversity of criteria. It is high time to come up with standard criteria and exact definitions. To this end, we conduct a through investigation of 105 papers involving human evaluation for Chatbots. Deriving from this, we propose five standard criteria along with precise definitions.

Access Paper or Ask Questions

Evaluating Empathetic Chatbots in Customer Service Settings

Jan 05, 2021
Akshay Agarwal, Shashank Maiya, Sonu Aggarwal

Customer service is a setting that calls for empathy in live human agent responses. Recent advances have demonstrated how open-domain chatbots can be trained to demonstrate empathy when responding to live human utterances. We show that a blended skills chatbot model that responds to customer queries is more likely to resemble actual human agent response if it is trained to recognize emotion and exhibit appropriate empathy, than a model without such training. For our analysis, we leverage a Twitter customer service dataset containing several million customer<->agent dialog examples in customer service contexts from 20 well-known brands.

* 8 pages, 7 figures 
Access Paper or Ask Questions

Are Neural Open-Domain Dialog Systems Robust to Speech Recognition Errors in the Dialog History? An Empirical Study

Aug 18, 2020
Karthik Gopalakrishnan, Behnam Hedayatnia, Longshaokan Wang, Yang Liu, Dilek Hakkani-Tur

Large end-to-end neural open-domain chatbots are becoming increasingly popular. However, research on building such chatbots has typically assumed that the user input is written in nature and it is not clear whether these chatbots would seamlessly integrate with automatic speech recognition (ASR) models to serve the speech modality. We aim to bring attention to this important question by empirically studying the effects of various types of synthetic and actual ASR hypotheses in the dialog history on TransferTransfo, a state-of-the-art Generative Pre-trained Transformer (GPT) based neural open-domain dialog system from the NeurIPS ConvAI2 challenge. We observe that TransferTransfo trained on written data is very sensitive to such hypotheses introduced to the dialog history during inference time. As a baseline mitigation strategy, we introduce synthetic ASR hypotheses to the dialog history during training and observe marginal improvements, demonstrating the need for further research into techniques to make end-to-end open-domain chatbots fully speech-robust. To the best of our knowledge, this is the first study to evaluate the effects of synthetic and actual ASR hypotheses on a state-of-the-art neural open-domain dialog system and we hope it promotes speech-robustness as an evaluation criterion in open-domain dialog.

* Accepted at INTERSPEECH 2020. For dataset, see 
Access Paper or Ask Questions

On Chatbots Exhibiting Goal-Directed Autonomy in Dynamic Environments

Mar 26, 2018
Biplav Srivastava

Conversation interfaces (CIs), or chatbots, are a popular form of intelligent agents that engage humans in task-oriented or informal conversation. In this position paper and demonstration, we argue that chatbots working in dynamic environments, like with sensor data, can not only serve as a promising platform to research issues at the intersection of learning, reasoning, representation and execution for goal-directed autonomy; but also handle non-trivial business applications. We explore the underlying issues in the context of Water Advisor, a preliminary multi-modal conversation system that can access and explain water quality data.

* 3 pages 
Access Paper or Ask Questions

Automatic Generation of Chatbots for Conversational Web Browsing

Aug 19, 2020
Pietro Chittò, Marcos Baez, Florian Daniel, Boualem Benatallah

In this paper, we describe the foundations for generating a chatbot out of a website equipped with simple, bot-specific HTML annotations. The approach is part of what we call conversational web browsing, i.e., a dialog-based, natural language interaction with websites. The goal is to enable users to use content and functionality accessible through rendered UIs by "talking to websites" instead of by operating the graphical UI using keyboard and mouse. The chatbot mediates between the user and the website, operates its graphical UI on behalf of the user, and informs the user about the state of interaction. We describe the conceptual vocabulary and annotation format, the supporting conversational middleware and techniques, and the implementation of a demo able to deliver conversational web browsing experiences through Amazon Alexa.

Access Paper or Ask Questions

Recipes for building an open-domain chatbot

Apr 30, 2020
Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston

Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.

Access Paper or Ask Questions

Towards a Continuous Knowledge Learning Engine for Chatbots

Feb 24, 2018
Sahisnu Mazumder, Nianzu Ma, Bing Liu

Although chatbots have been very popular in recent years, they still have some serious weaknesses which limit the scope of their applications. One major weakness is that they cannot learn new knowledge during the conversation process, i.e., their knowledge is fixed beforehand and cannot be expanded or updated during conversation. In this paper, we propose to build a general knowledge learning engine for chatbots to enable them to continuously and interactively learn new knowledge during conversations. As time goes by, they become more and more knowledgeable and better and better at learning and conversation. We model the task as an open-world knowledge base completion problem and propose a novel technique called lifelong interactive learning and inference (LiLi) to solve it. LiLi works by imitating how humans acquire knowledge and perform inference during an interactive conversation. Our experimental results show LiLi is highly promising.

Access Paper or Ask Questions