Abstract:Large Language Models (LLMs) are a transformational technology, fundamentally changing how people obtain information and interact with the world. As people become increasingly reliant on them for an enormous variety of tasks, a body of academic research has developed to examine these models for inherent biases, especially political biases, often finding them small. We challenge this prevailing wisdom. First, by comparing 31 LLMs to legislators, judges, and a nationally representative sample of U.S. voters, we show that LLMs' apparently small overall partisan preference is the net result of offsetting extreme views on specific topics, much like moderate voters. Second, in a randomized experiment, we show that LLMs can promulgate their preferences into political persuasiveness even in information-seeking contexts: voters randomized to discuss political issues with an LLM chatbot are as much as 5 percentage points more likely to express the same preferences as that chatbot. Contrary to expectations, these persuasive effects are not moderated by familiarity with LLMs, news consumption, or interest in politics. LLMs, especially those controlled by private companies or governments, may become a powerful and targeted vector for political influence.
Abstract:Accessing the internet in regions with expensive data plans and limited connectivity poses significant challenges, restricting information access and economic growth. Images, as a major contributor to webpage sizes, exacerbate this issue, despite advances in compression formats like WebP and AVIF. The continued growth of complex and curated web content, coupled with suboptimal optimization practices in many regions, has prevented meaningful reductions in web page sizes. This paper introduces PixLift, a novel solution to reduce webpage sizes by downscaling their images during transmission and leveraging AI models on user devices to upscale them. By trading computational resources for bandwidth, PixLift enables more affordable and inclusive web access. We address key challenges, including the feasibility of scaled image requests on popular websites, the implementation of PixLift as a browser extension, and its impact on user experience. Through the analysis of 71.4k webpages, evaluations of three mainstream upscaling models, and a user study, we demonstrate PixLift's ability to significantly reduce data usage without compromising image quality, fostering a more equitable internet.