Transformer-based language models of code have achieved state-of-the-art performance across a wide range of software analytics tasks, but their practical deployment remains limited due to high computational costs, slow inference speeds, and significant environmental impact. To address these challenges, recent research has increasingly explored knowledge distillation as a method for compressing a large language model of code (the teacher) into a smaller model (the student) while maintaining performance. However, the degree to which a student model deeply mimics the predictive behavior and internal representations of its teacher remains largely unexplored, as current accuracy-based evaluation provides only a surface-level view of model quality and often fails to capture more profound discrepancies in behavioral fidelity between the teacher and student models. To address this gap, we empirically show that the student model often fails to deeply mimic the teacher model, resulting in up to 285% greater performance drop under adversarial attacks, which is not captured by traditional accuracy-based evaluation. Therefore, we propose MetaCompress, a metamorphic testing framework that systematically evaluates behavioral fidelity by comparing the outputs of teacher and student models under a set of behavior-preserving metamorphic relations. We evaluate MetaCompress on two widely studied tasks, using compressed versions of popular language models of code, obtained via three different knowledge distillation techniques: Compressor, AVATAR, and MORPH. The results show that MetaCompress identifies up to 62% behavioral discrepancies in student models, underscoring the need for behavioral fidelity evaluation within the knowledge distillation pipeline and establishing MetaCompress as a practical framework for testing compressed language models of code derived through knowledge distillation.
We study adversarially robust multitask adaptive linear quadratic control; a setting where multiple systems collaboratively learn control policies under model uncertainty and adversarial corruption. We propose a clustered multitask approach that integrates clustering and system identification with resilient aggregation to mitigate corrupted model updates. Our analysis characterizes how clustering accuracy, intra-cluster heterogeneity, and adversarial behavior affect the expected regret of certainty-equivalent (CE) control across LQR tasks. We establish non-asymptotic bounds demonstrating that the regret decreases inversely with the number of honest systems per cluster and that this reduction is preserved under a bounded fraction of adversarial systems within each cluster.
Multicalibration [HJKRR18] is an algorithmic fairness perspective that demands that the predictions of a predictor are correct conditional on themselves and membership in a collection of potentially overlapping subgroups of a population. The work of [NR23] established a surprising connection between multicalibration for an arbitrary property $\Gamma$ (e.g., mean or median) and property elicitation: a property $\Gamma$ can be multicalibrated if and only if it is elicitable, where elicitability is the notion that the true property value of a distribution can be obtained by solving a regression problem over the distribution. In the online setting, [NR23] proposed an inefficient algorithm that achieves $\sqrt T$ $\ell_2$-multicalibration error for a hypothesis class of group membership functions and an elicitable property $\Gamma$, after $T$ rounds of interaction between a forecaster and adversary. In this paper, we generalize multicalibration for an elicitable property $\Gamma$ from group membership functions to arbitrary bounded hypothesis classes and introduce a stronger notion -- swap multicalibration, following [GKR23]. Subsequently, we propose an oracle-efficient algorithm which, when given access to an online agnostic learner, achieves $T^{1/(r+1)}$ $\ell_r$-swap multicalibration error with high probability (for $r\ge2$) for a hypothesis class with bounded sequential Rademacher complexity and an elicitable property $\Gamma$. For the special case of $r=2$, this implies an oracle-efficient algorithm that achieves $T^{1/3}$ $\ell_2$-swap multicalibration error, which significantly improves on the previously established bounds for the problem [NR23, GMS25, LSS25a], and completely resolves an open question raised in [GJRR24] on the possibility of an oracle-efficient algorithm that achieves $\sqrt{T}$ $\ell_2$-mean multicalibration error by answering it in a strongly affirmative sense.
We study the repeated optimal stopping problem, which generalizes the classical optimal stopping problem with an unknown distribution to a setting where the same problem is solved repeatedly over $T$ rounds. In this framework, we aim to design algorithms that guarantee a competitive ratio in each round while also achieving sublinear regret across all rounds. Our primary contribution is a general algorithmic framework that achieves these objectives simultaneously for a wide array of repeated optimal stopping problems. The core idea is to dynamically select an algorithm for each round, choosing between two candidates: (1) an empirically optimal algorithm derived from the history of observations, and (2) a sample-based algorithm with a proven competitive ratio guarantee. Based on this approach, we design an algorithm that performs no worse than the baseline sample-based algorithm in every round, while ensuring that the total regret is bounded by $\tilde{O}(\sqrt{T})$. We demonstrate the broad applicability of our framework to canonical problems, including the prophet inequality, the secretary problem, and their variants under adversarial, random, and i.i.d. input models. For example, for the repeated prophet inequality problem, our method achieves a $1/2$-competitive ratio from the second round on and an $\tilde{O}(\sqrt{T})$ regret. Furthermore, we establish a regret lower bound of $\Omega(\sqrt{T})$ even in the i.i.d. model, confirming that our algorithm's performance is almost optimal with respect to the number of rounds.
Time series forecasting is essential across domains from finance to supply chain management. This paper introduces ForecastGAN, a novel decomposition based adversarial framework addressing limitations in existing approaches for multi-horizon predictions. Although transformer models excel in long-term forecasting, they often underperform in short-term scenarios and typically ignore categorical features. ForecastGAN operates through three integrated modules: a Decomposition Module that extracts seasonality and trend components; a Model Selection Module that identifies optimal neural network configurations based on forecasting horizon; and an Adversarial Training Module that enhances prediction robustness through Conditional Generative Adversarial Network training. Unlike conventional approaches, ForecastGAN effectively integrates both numerical and categorical features. We validate our framework on eleven benchmark multivariate time series datasets that span various forecasting horizons. The results show that ForecastGAN consistently outperforms state-of-the-art transformer models for short-term forecasting while remaining competitive for long-term horizons. This research establishes a more generalizable approach to time series forecasting that adapts to specific contexts while maintaining strong performance across diverse data characteristics without extensive hyperparameter tuning.
This paper is concerned with probabilistic techniques for forecasting dynamical systems described by partial differential equations (such as, for example, the Navier-Stokes equations). In particular, it is investigating and comparing various extensions to the flow matching paradigm that reduce the number of sampling steps. In this regard, it compares direct distillation, progressive distillation, adversarial diffusion distillation, Wasserstein GANs and rectified flows. Moreover, experiments are conducted on a set of challenging systems. In particular, we also address the challenge of directly predicting 2D slices of large-scale 3D simulations, paving the way for efficient inflow generation for solvers.
The rapid expansion of research on Large Language Model (LLM) safety and robustness has produced a fragmented and oftentimes buggy ecosystem of implementations, datasets, and evaluation methods. This fragmentation makes reproducibility and comparability across studies challenging, hindering meaningful progress. To address these issues, we introduce AdversariaLLM, a toolbox for conducting LLM jailbreak robustness research. Its design centers on reproducibility, correctness, and extensibility. The framework implements twelve adversarial attack algorithms, integrates seven benchmark datasets spanning harmfulness, over-refusal, and utility evaluation, and provides access to a wide range of open-weight LLMs via Hugging Face. The implementation includes advanced features for comparability and reproducibility such as compute-resource tracking, deterministic results, and distributional evaluation techniques. \name also integrates judging through the companion package JudgeZoo, which can also be used independently. Together, these components aim to establish a robust foundation for transparent, comparable, and reproducible research in LLM safety.
The deployment of large language models (LLMs) in automated negotiation has set a high performance benchmark, but their computational cost and data privacy requirements render them unsuitable for many privacy-sensitive, on-device applications such as mobile assistants, embodied AI agents or private client interactions. While small language models (SLMs) offer a practical alternative, they suffer from a significant performance gap compared to LLMs in playing emotionally charged complex personas, especially for credit negotiation. This paper introduces EQ-Negotiator, a novel framework that bridges this capability gap using emotional personas. Its core is a reasoning system that integrates game theory with a Hidden Markov Model(HMM) to learn and track debtor emotional states online, without pre-training. This allows EQ-Negotiator to equip SLMs with the strategic intelligence to counter manipulation while de-escalating conflict and upholding ethical standards. Through extensive agent-to-agent simulations across diverse credit negotiation scenarios, including adversarial debtor strategies like cheating, threatening, and playing the victim, we show that a 7B parameter language model with EQ-Negotiator achieves better debt recovery and negotiation efficiency than baseline LLMs more than 10 times its size. This work advances persona modeling from descriptive character profiles to dynamic emotional architectures that operate within privacy constraints. Besides, this paper establishes that strategic emotional intelligence, not raw model scale, is the critical factor for success in automated negotiation, paving the way for effective, ethical, and privacy-preserving AI negotiators that can operate on the edge.
Large Language Models (LLMs) are increasingly deployed in sensitive domains including healthcare, legal services, and confidential communications, where privacy is paramount. This paper introduces Whisper Leak, a side-channel attack that infers user prompt topics from encrypted LLM traffic by analyzing packet size and timing patterns in streaming responses. Despite TLS encryption protecting content, these metadata patterns leak sufficient information to enable topic classification. We demonstrate the attack across 28 popular LLMs from major providers, achieving near-perfect classification (often >98% AUPRC) and high precision even at extreme class imbalance (10,000:1 noise-to-target ratio). For many models, we achieve 100% precision in identifying sensitive topics like "money laundering" while recovering 5-20% of target conversations. This industry-wide vulnerability poses significant risks for users under network surveillance by ISPs, governments, or local adversaries. We evaluate three mitigation strategies - random padding, token batching, and packet injection - finding that while each reduces attack effectiveness, none provides complete protection. Through responsible disclosure, we have collaborated with providers to implement initial countermeasures. Our findings underscore the need for LLM providers to address metadata leakage as AI systems handle increasingly sensitive information.
The integration of IoT devices in healthcare introduces significant security and reliability challenges, increasing susceptibility to cyber threats and operational anomalies. This study proposes a machine learning-driven framework for (1) detecting malicious cyberattacks and (2) identifying faulty device anomalies, leveraging a dataset of 200,000 records. Eight machine learning models are evaluated across three learning approaches: supervised learning (XGBoost, K-Nearest Neighbors (K- NN)), semi-supervised learning (Generative Adversarial Networks (GAN), Variational Autoencoders (VAE)), and unsupervised learning (One-Class Support Vector Machine (SVM), Isolation Forest, Graph Neural Networks (GNN), and Long Short-Term Memory (LSTM) Autoencoders). The comprehensive evaluation was conducted across multiple metrics like F1-score, precision, recall, accuracy, ROC-AUC, computational efficiency. XGBoost achieved 99\% accuracy with minimal computational overhead (0.04s) for anomaly detection, while Isolation Forest balanced precision and recall effectively. LSTM Autoencoders underperformed with lower accuracy and higher latency. For attack detection, KNN achieved near-perfect precision, recall, and F1-score with the lowest computational cost (0.05s), followed by VAE at 97% accuracy. GAN showed the highest computational cost with lowest accuracy and ROC-AUC. These findings enhance IoT-enabled healthcare security through effective anomaly detection strategies. By improving early detection of cyber threats and device failures, this framework has the potential to prevent data breaches, minimize system downtime, and ensure the continuous and safe operation of medical devices, ultimately safeguarding patient health and trust in IoT-driven healthcare solutions.