In this work, we give a ${\rm poly}(d,k)$ time and sample algorithm for efficiently learning the parameters of a mixture of $k$ spherical distributions in $d$ dimensions. Unlike all previous methods, our techniques apply to heavy-tailed distributions and include examples that do not even have finite covariances. Our method succeeds whenever the cluster distributions have a characteristic function with sufficiently heavy tails. Such distributions include the Laplace distribution but crucially exclude Gaussians. All previous methods for learning mixture models relied implicitly or explicitly on the low-degree moments. Even for the case of Laplace distributions, we prove that any such algorithm must use super-polynomially many samples. Our method thus adds to the short list of techniques that bypass the limitations of the method of moments. Somewhat surprisingly, our algorithm does not require any minimum separation between the cluster means. This is in stark contrast to spherical Gaussian mixtures where a minimum $\ell_2$-separation is provably necessary even information-theoretically [Regev and Vijayaraghavan '17]. Our methods compose well with existing techniques and allow obtaining ''best of both worlds" guarantees for mixtures where every component either has a heavy-tailed characteristic function or has a sub-Gaussian tail with a light-tailed characteristic function. Our algorithm is based on a new approach to learning mixture models via efficient high-dimensional sparse Fourier transforms. We believe that this method will find more applications to statistical estimation. As an example, we give an algorithm for consistent robust mean estimation against noise-oblivious adversaries, a model practically motivated by the literature on multiple hypothesis testing. It was formally proposed in a recent Master's thesis by one of the authors, and has already inspired follow-up works.
Large Reasoning Models (LRMs) improve performance, reliability, and interpretability by generating explicit chain-of-thought (CoT) reasoning, but this transparency introduces a serious privacy risk: intermediate reasoning often leaks personally identifiable information (PII) even when final answers are sanitized. We study how to induce privacy-first reasoning, where models reason without exposing sensitive information, using deployable interventions rather than post-hoc redaction. We introduce PII-CoT-Bench, a supervised dataset with privacy-aware CoT annotations, and a category-balanced evaluation benchmark covering realistic and adversarial leakage scenarios. Our results reveal a capability-dependent trend: state-of-the-art models benefit most from prompt-based controls, whereas weaker models require fine-tuning to achieve meaningful leakage reduction. Across models and categories, both approaches substantially reduce PII exposure with minimal degradation in utility, demonstrating that private reasoning can be achieved without sacrificing performance. Overall, we show that private CoT reasoning can be achieved with minimal utility loss, providing practical guidance for building privacy-preserving reasoning systems.
Quantum generative modeling is a very active area of research in looking for practical advantage in data analysis. Quantum generative adversarial networks (QGANs) are leading candidates for quantum generative modeling and have been applied to diverse areas, from high-energy physics to image generation. The latent style-based QGAN, relying on a classical variational autoencoder to encode the input data into a latent space and then using a style-based QGAN for data generation has been proven to be efficient for image generation or drug design, hinting at the use of far less trainable parameters than their classical counterpart to achieve comparable performance, however this advantage has never been systematically studied. We present in this work the first comprehensive experimental analysis of this advantage of QGANS applied to SAT4 image generation, obtaining an exponential advantage in capacity scaling for a quantum generator in the hybrid latent style-based QGAN architecture. Careful tuning of the autoencoder is crucial to obtain stable, reliable results. Once this tuning is performed and defining training optimality as when the training is stable and the FID score is low and stable as well, the optimal capacity (or number of trainable parameters) of the classical discriminator scales exponentially with respect to the capacity of the quantum generator, and the same is true for the capacity of the classical generator. This hints toward a type of quantum advantage for quantum generative modeling.
Higher-order adversarial attacks can directly be considered the result of a cat-and-mouse game -- an elaborate action involving constant pursuit, near captures, and repeated escapes. This idiom describes the enduring circular training of adversarial attack patterns and adversarial training the best. The following work investigates the impact of higher-order adversarial attacks on object detectors by successively training attack patterns and hardening object detectors with adversarial training. The YOLOv10 object detector is chosen as a representative, and adversarial patches are used in an evasion attack manner. Our results indicate that higher-order adversarial patches are not only affecting the object detector directly trained on but rather provide a stronger generalization capacity compared to lower-order adversarial patches. Moreover, the results highlight that solely adversarial training is not sufficient to harden an object detector efficiently against this kind of adversarial attack. Code: https://github.com/JensBayer/HigherOrder
Automatic metrics are now central to evaluating text-to-image models, often substituting for human judgment in benchmarking and large-scale filtering. However, it remains unclear whether these metrics truly prioritize semantic correctness or instead favor visually and socially prototypical images learned from biased data distributions. We identify and study \emph{prototypicality bias} as a systematic failure mode in multimodal evaluation. We introduce a controlled contrastive benchmark \textsc{\textbf{ProtoBias}} (\textit{\textbf{Proto}typical \textbf{Bias}}), spanning Animals, Objects, and Demography images, where semantically correct but non-prototypical images are paired with subtly incorrect yet prototypical adversarial counterparts. This setup enables a directional evaluation of whether metrics follow textual semantics or default to prototypes. Our results show that widely used metrics, including CLIPScore, PickScore, and VQA-based scores, frequently misrank these pairs, while even LLM-as-Judge systems exhibit uneven robustness in socially grounded cases. Human evaluations consistently favour semantic correctness with larger decision margins. Motivated by these findings, we propose \textbf{\textsc{ProtoScore}}, a robust 7B-parameter metric that substantially reduces failure rates and suppresses misranking, while running at orders of magnitude faster than the inference time of GPT-5, approaching the robustness of much larger closed-source judges.
As LLM agents transition from digital assistants to physical controllers in autonomous systems and robotics, they face an escalating threat from indirect prompt injection. By embedding adversarial instructions into the results of tool calls, attackers can hijack the agent's decision-making process to execute unauthorized actions. This vulnerability poses a significant risk as agents gain more direct control over physical environments. Existing defense mechanisms against Indirect Prompt Injection (IPI) generally fall into two categories. The first involves training dedicated detection models; however, this approach entails high computational overhead for both training and inference, and requires frequent updates to keep pace with evolving attack vectors. Alternatively, prompt-based methods leverage the inherent capabilities of LLMs to detect or ignore malicious instructions via prompt engineering. Despite their flexibility, most current prompt-based defenses suffer from high Attack Success Rates (ASR), demonstrating limited robustness against sophisticated injection attacks. In this paper, we propose a novel method that provides LLMs with precise data via tool result parsing while effectively filtering out injected malicious code. Our approach achieves competitive Utility under Attack (UA) while maintaining the lowest Attack Success Rate (ASR) to date, significantly outperforming existing methods. Code is available at GitHub.
This work explores the visual capabilities and limitations of foundation models by introducing a novel adversarial attack method utilizing skeletonization to reduce the search space effectively. Our approach specifically targets images containing text, particularly mathematical formula images, which are more challenging due to their LaTeX conversion and intricate structure. We conduct a detailed evaluation of both character and semantic changes between original and adversarially perturbed outputs to provide insights into the models' visual interpretation and reasoning abilities. The effectiveness of our method is further demonstrated through its application to ChatGPT, which shows its practical implications in real-world scenarios.
The reliability of large language models (LLMs) in production environments remains significantly constrained by their propensity to generate hallucinations--fluent, plausible-sounding outputs that contradict or fabricate information. While hallucination detection has recently emerged as a priority in English-centric benchmarks, low-to-medium resource languages such as Vietnamese remain inadequately covered by standardized evaluation frameworks. This paper introduces the DSC2025 ViHallu Challenge, the first large-scale shared task for detecting hallucinations in Vietnamese LLMs. We present the ViHallu dataset, comprising 10,000 annotated triplets of (context, prompt, response) samples systematically partitioned into three hallucination categories: no hallucination, intrinsic, and extrinsic hallucinations. The dataset incorporates three prompt types--factual, noisy, and adversarial--to stress-test model robustness. A total of 111 teams participated, with the best-performing system achieving a macro-F1 score of 84.80\%, compared to a baseline encoder-only score of 32.83\%, demonstrating that instruction-tuned LLMs with structured prompting and ensemble strategies substantially outperform generic architectures. However, the gap to perfect performance indicates that hallucination detection remains a challenging problem, particularly for intrinsic (contradiction-based) hallucinations. This work establishes a rigorous benchmark and explores a diverse range of detection methodologies, providing a foundation for future research into the trustworthiness and reliability of Vietnamese language AI systems.
Large Language Model-based Multi-Agent Systems (LLM-based MAS), where multiple LLM agents collaborate to solve complex tasks, have shown impressive performance in many areas. However, MAS are typically distributed across different devices or environments, making them vulnerable to perturbations such as agent failures. While existing works have studied the adversarial attacks and corresponding defense strategies, they mainly focus on reactively detecting and mitigating attacks after they occur rather than proactively designing inherently resilient systems. In this work, we study the resilience of LLM-based MAS under perturbations and find that both the communication topology and prompt design significantly influence system resilience. Motivated by these findings, we propose ResMAS: a two-stage framework for enhancing MAS resilience. First, we train a reward model to predict the MAS's resilience, based on which we train a topology generator to automatically design resilient topology for specific tasks through reinforcement learning. Second, we introduce a topology-aware prompt optimization method that refines each agent's prompt based on its connections and interactions with other agents. Extensive experiments across a range of tasks show that our approach substantially improves MAS resilience under various constraints. Moreover, our framework demonstrates strong generalization ability to new tasks and models, highlighting its potential for building resilient MASs.
Recent advances in synergizing large reasoning models (LRMs) with retrieval-augmented generation (RAG) have shown promising results, yet two critical challenges remain: (1) reasoning models typically operate from a single, unchallenged perspective, limiting their ability to conduct deep, self-correcting reasoning over external documents, and (2) existing training paradigms rely excessively on outcome-oriented rewards, which provide insufficient signal for shaping the complex, multi-step reasoning process. To address these issues, we propose an Reasoner-Verifier framework named Adversarial Reasoning RAG (ARR). The Reasoner and Verifier engage in reasoning on retrieved evidence and critiquing each other's logic while being guided by process-aware advantage that requires no external scoring model. This reward combines explicit observational signals with internal model uncertainty to jointly optimize reasoning fidelity and verification rigor. Experiments on multiple benchmarks demonstrate the effectiveness of our method.