Large Language Models (LLMs) are increasingly deployed in sensitive domains including healthcare, legal services, and confidential communications, where privacy is paramount. This paper introduces Whisper Leak, a side-channel attack that infers user prompt topics from encrypted LLM traffic by analyzing packet size and timing patterns in streaming responses. Despite TLS encryption protecting content, these metadata patterns leak sufficient information to enable topic classification. We demonstrate the attack across 28 popular LLMs from major providers, achieving near-perfect classification (often >98% AUPRC) and high precision even at extreme class imbalance (10,000:1 noise-to-target ratio). For many models, we achieve 100% precision in identifying sensitive topics like "money laundering" while recovering 5-20% of target conversations. This industry-wide vulnerability poses significant risks for users under network surveillance by ISPs, governments, or local adversaries. We evaluate three mitigation strategies - random padding, token batching, and packet injection - finding that while each reduces attack effectiveness, none provides complete protection. Through responsible disclosure, we have collaborated with providers to implement initial countermeasures. Our findings underscore the need for LLM providers to address metadata leakage as AI systems handle increasingly sensitive information.
The integration of IoT devices in healthcare introduces significant security and reliability challenges, increasing susceptibility to cyber threats and operational anomalies. This study proposes a machine learning-driven framework for (1) detecting malicious cyberattacks and (2) identifying faulty device anomalies, leveraging a dataset of 200,000 records. Eight machine learning models are evaluated across three learning approaches: supervised learning (XGBoost, K-Nearest Neighbors (K- NN)), semi-supervised learning (Generative Adversarial Networks (GAN), Variational Autoencoders (VAE)), and unsupervised learning (One-Class Support Vector Machine (SVM), Isolation Forest, Graph Neural Networks (GNN), and Long Short-Term Memory (LSTM) Autoencoders). The comprehensive evaluation was conducted across multiple metrics like F1-score, precision, recall, accuracy, ROC-AUC, computational efficiency. XGBoost achieved 99\% accuracy with minimal computational overhead (0.04s) for anomaly detection, while Isolation Forest balanced precision and recall effectively. LSTM Autoencoders underperformed with lower accuracy and higher latency. For attack detection, KNN achieved near-perfect precision, recall, and F1-score with the lowest computational cost (0.05s), followed by VAE at 97% accuracy. GAN showed the highest computational cost with lowest accuracy and ROC-AUC. These findings enhance IoT-enabled healthcare security through effective anomaly detection strategies. By improving early detection of cyber threats and device failures, this framework has the potential to prevent data breaches, minimize system downtime, and ensure the continuous and safe operation of medical devices, ultimately safeguarding patient health and trust in IoT-driven healthcare solutions.
The deployment of large language models (LLMs) in automated negotiation has set a high performance benchmark, but their computational cost and data privacy requirements render them unsuitable for many privacy-sensitive, on-device applications such as mobile assistants, embodied AI agents or private client interactions. While small language models (SLMs) offer a practical alternative, they suffer from a significant performance gap compared to LLMs in playing emotionally charged complex personas, especially for credit negotiation. This paper introduces EQ-Negotiator, a novel framework that bridges this capability gap using emotional personas. Its core is a reasoning system that integrates game theory with a Hidden Markov Model(HMM) to learn and track debtor emotional states online, without pre-training. This allows EQ-Negotiator to equip SLMs with the strategic intelligence to counter manipulation while de-escalating conflict and upholding ethical standards. Through extensive agent-to-agent simulations across diverse credit negotiation scenarios, including adversarial debtor strategies like cheating, threatening, and playing the victim, we show that a 7B parameter language model with EQ-Negotiator achieves better debt recovery and negotiation efficiency than baseline LLMs more than 10 times its size. This work advances persona modeling from descriptive character profiles to dynamic emotional architectures that operate within privacy constraints. Besides, this paper establishes that strategic emotional intelligence, not raw model scale, is the critical factor for success in automated negotiation, paving the way for effective, ethical, and privacy-preserving AI negotiators that can operate on the edge.
Neural networks have changed the way machines interpret the world. At their core, they learn by following gradients, adjusting their parameters step by step until they identify the most discriminant patterns in the data. This process gives them their strength, yet it also opens the door to a hidden flaw. The very gradients that help a model learn can also be used to produce small, imperceptible tweaks that cause the model to completely alter its decision. Such tweaks are called adversarial attacks. These attacks exploit this vulnerability by adding tiny, imperceptible changes to images that, while leaving them identical to the human eye, cause the model to make wrong predictions. In this work, we propose Adversarially-trained Contrastive Hard-mining for Optimized Robustness (ANCHOR), a framework that leverages the power of supervised contrastive learning with explicit hard positive mining to enable the model to learn representations for images such that the embeddings for the images, their augmentations, and their perturbed versions cluster together in the embedding space along with those for other images of the same class while being separated from images of other classes. This alignment helps the model focus on stable, meaningful patterns rather than fragile gradient cues. On CIFAR-10, our approach achieves impressive results for both clean and robust accuracy under PGD-20 (epsilon = 0.031), outperforming standard adversarial training methods. Our results indicate that combining adversarial guidance with hard-mined contrastive supervision helps models learn more structured and robust representations, narrowing the gap between accuracy and robustness.
The rapid evolution of generative adversarial networks (GANs) and diffusion models has made synthetic media increasingly realistic, raising societal concerns around misinformation, identity fraud, and digital trust. Existing deepfake detection methods either rely on deep learning, which suffers from poor generalization and vulnerability to distortions, or forensic analysis, which is interpretable but limited against new manipulation techniques. This study proposes a hybrid framework that fuses forensic features, including noise residuals, JPEG compression traces, and frequency-domain descriptors, with deep learning representations from convolutional neural networks (CNNs) and vision transformers (ViTs). Evaluated on benchmark datasets (FaceForensics++, Celeb-DF v2, DFDC), the proposed model consistently outperformed single-method baselines and demonstrated superior performance compared to existing state-of-the-art hybrid approaches, achieving F1-scores of 0.96, 0.82, and 0.77, respectively. Robustness tests demonstrated stable performance under compression (F1 = 0.87 at QF = 50), adversarial perturbations (AUC = 0.84), and unseen manipulations (F1 = 0.79). Importantly, explainability analysis showed that Grad-CAM and forensic heatmaps overlapped with ground-truth manipulated regions in 82 percent of cases, enhancing transparency and user trust. These findings confirm that hybrid approaches provide a balanced solution, combining the adaptability of deep models with the interpretability of forensic cues, to develop resilient and trustworthy deepfake detection systems.
Recent advances in neural decoding have enabled the reconstruction of visual experiences from brain activity, positioning fMRI-to-image reconstruction as a promising bridge between neuroscience and computer vision. However, current methods predominantly rely on subject-specific models or require subject-specific fine-tuning, limiting their scalability and real-world applicability. In this work, we introduce ZEBRA, the first zero-shot brain visual decoding framework that eliminates the need for subject-specific adaptation. ZEBRA is built on the key insight that fMRI representations can be decomposed into subject-related and semantic-related components. By leveraging adversarial training, our method explicitly disentangles these components to isolate subject-invariant, semantic-specific representations. This disentanglement allows ZEBRA to generalize to unseen subjects without any additional fMRI data or retraining. Extensive experiments show that ZEBRA significantly outperforms zero-shot baselines and achieves performance comparable to fully finetuned models on several metrics. Our work represents a scalable and practical step toward universal neural decoding. Code and model weights are available at: https://github.com/xmed-lab/ZEBRA.
Concept erasure aims to selectively unlearning undesirable content in diffusion models (DMs) to reduce the risk of sensitive content generation. As a novel paradigm in concept erasure, most existing methods employ adversarial training to identify and suppress target concepts, thus reducing the likelihood of sensitive outputs. However, these methods often neglect the specificity of adversarial training in DMs, resulting in only partial mitigation. In this work, we investigate and quantify this specificity from the perspective of concept space, i.e., can adversarial samples truly fit the target concept space? We observe that existing methods neglect the role of conceptual semantics when generating adversarial samples, resulting in ineffective fitting of concept spaces. This oversight leads to the following issues: 1) when there are few adversarial samples, they fail to comprehensively cover the object concept; 2) conversely, they will disrupt other target concept spaces. Motivated by the analysis of these findings, we introduce S-GRACE (Semantics-Guided Robust Adversarial Concept Erasure), which grace leveraging semantic guidance within the concept space to generate adversarial samples and perform erasure training. Experiments conducted with seven state-of-the-art methods and three adversarial prompt generation strategies across various DM unlearning scenarios demonstrate that S-GRACE significantly improves erasure performance 26%, better preserves non-target concepts, and reduces training time by 90%. Our code is available at https://github.com/Qhong-522/S-GRACE.
In recent times, deep neural networks (DNNs) have been successfully adopted for various applications. Despite their notable achievements, it has become evident that DNNs are vulnerable to sophisticated adversarial attacks, restricting their applications in security-critical systems. In this paper, we present two-phase training methods to tackle the attack: first, training the denoising network, and second, the deep classifier model. We propose a novel denoising strategy that integrates both spatial and frequency domain approaches to defend against adversarial attacks on images. Our analysis reveals that high-frequency components of attacked images are more severely corrupted compared to their lower-frequency counterparts. To address this, we leverage Discrete Wavelet Transform (DWT) for frequency analysis and develop a denoising network that combines spatial image features with wavelets through a transformer layer. Next, we retrain the classifier using the denoised images, which enhances the classifier's robustness against adversarial attacks. Experimental results across the MNIST, CIFAR-10, and Fashion-MNIST datasets reveal that the proposed method remarkably elevates classification accuracy, substantially exceeding the performance by utilizing a denoising network and adversarial training approaches. The code is available at https://github.com/Mayank94/Trans-Defense.
Deep neural networks (DNNs) have achieved remarkable success in computer vision tasks such as image classification, segmentation, and object detection. However, they are vulnerable to adversarial attacks, which can cause incorrect predictions with small perturbations in input images. Addressing this issue is crucial for deploying robust deep-learning systems. This paper presents a novel approach that utilizes contrastive learning for adversarial defense, a previously unexplored area. Our method leverages the contrastive loss function to enhance the robustness of classification models by training them with both clean and adversarially perturbed images. By optimizing the model's parameters alongside the perturbations, our approach enables the network to learn robust representations that are less susceptible to adversarial attacks. Experimental results show significant improvements in the model's robustness against various types of adversarial perturbations. This suggests that contrastive loss helps extract more informative and resilient features, contributing to the field of adversarial robustness in deep learning.




The proliferation of Internet of Things (IoT) networks has created an urgent need for sustainable energy solutions, particularly for the battery-constrained spatially distributed IoT nodes. While low-altitude uncrewed aerial vehicles (UAVs) employed with wireless power transfer (WPT) capabilities offer a promising solution, the line-of-sight channels that facilitate efficient energy delivery also expose sensitive operational data to adversaries. This paper proposes a novel low-altitude UAV-carried movable antenna-enhanced transmission system joint WPT and covert communications, which simultaneously performs energy supplements to IoT nodes and establishes transmission links with a covert user by leveraging wireless energy signals as a natural cover. Then, we formulate a multi-objective optimization problem that jointly maximizes the total harvested energy of IoT nodes and sum achievable rate of the covert user, while minimizing the propulsion energy consumption of the low-altitude UAV. To address the non-convex and temporally coupled optimization problem, we propose a mixture-of-experts-augmented soft actor-critic (MoE-SAC) algorithm that employs a sparse Top-K gated mixture-of-shallow-experts architecture to represent multimodal policy distributions arising from the conflicting optimization objectives. We also incorporate an action projection module that explicitly enforces per-time-slot power budget constraints and antenna position constraints. Simulation results demonstrate that the proposed approach significantly outperforms some baseline approaches and other state-of-the-art deep reinforcement learning algorithms.