What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Apr 17, 2025
Abstract:Internet penetration rates in Africa are rising steadily, and mobile Internet is getting an even bigger boost with the availability of smartphones. Young people are increasingly using the Internet, especially social networks, and Senegal is no exception to this revolution. Social networks have become the main means of expression for young people. Despite this evolution in Internet access, there are few operators on the market, which limits the alternatives available in terms of value for money. In this paper, we will look at how young people feel about the price of mobile Internet in Senegal, in relation to the perceived quality of the service, through their comments on social networks. We scanned a set of Twitter and Facebook comments related to the subject and applied a sentiment analysis model to gather their general feelings.
* 19 pages, 14 figures, 10th International Congress on Information and
Communication Technology (ICICT 2025)
Via

Apr 22, 2025
Abstract:Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated multimodal content on social platforms, aimed at predicting sentiment polarity toward specific aspect targets (i.e., entities or attributes explicitly mentioned in text-image pairs). Despite extensive efforts and significant achievements in existing MASC, substantial gaps remain in understanding fine-grained visual content and the cognitive rationales derived from semantic content and impressions (cognitive interpretations of emotions evoked by image content). In this study, we present Chimera: a cognitive and aesthetic sentiment causality understanding framework to derive fine-grained holistic features of aspects and infer the fundamental drivers of sentiment expression from both semantic perspectives and affective-cognitive resonance (the synergistic effect between emotional responses and cognitive interpretations). Specifically, this framework first incorporates visual patch features for patch-word alignment. Meanwhile, it extracts coarse-grained visual features (e.g., overall image representation) and fine-grained visual regions (e.g., aspect-related regions) and translates them into corresponding textual descriptions (e.g., facial, aesthetic). Finally, we leverage the sentimental causes and impressions generated by a large language model (LLM) to enhance the model's awareness of sentimental cues evoked by semantic content and affective-cognitive resonance. Experimental results on standard MASC datasets demonstrate the effectiveness of the proposed model, which also exhibits greater flexibility to MASC compared to LLMs such as GPT-4o. We have publicly released the complete implementation and dataset at https://github.com/Xillv/Chimera
* Accepted by TAFFC 2025
Via

Apr 21, 2025
Abstract:In the age of social media, understanding public sentiment toward major corporations is crucial for investors, policymakers, and researchers. This paper presents a comprehensive sentiment analysis system tailored for corporate reputation monitoring, combining Natural Language Processing (NLP) and machine learning techniques to accurately interpret public opinion in real time. The methodology integrates a hybrid sentiment detection framework leveraging both rule-based models (VADER) and transformer-based deep learning models (DistilBERT), applied to social media data from multiple platforms. The system begins with robust preprocessing involving noise removal and text normalization, followed by sentiment classification using an ensemble approach to ensure both interpretability and contextual accuracy. Results are visualized through sentiment distribution plots, comparative analyses, and temporal sentiment trends for enhanced interpretability. Our analysis reveals significant disparities in public sentiment across major corporations, with companies like Amazon (81.2) and Samsung (45.8) receiving excellent sentiment scores, while Microsoft (21.7) and Walmart (21.9) exhibit poor sentiment profiles. These findings demonstrate the utility of our multi-source sentiment framework in providing actionable insights regarding corporate public perception, enabling stakeholders to make informed strategic decisions based on comprehensive sentiment analysis.
* 19 pages, 2 figures
Via

Apr 18, 2025
Abstract:This research examines whether Airbnb guests' positive and negative comments influence acceptance rates and rental prices across six U.S. regions: Rhode Island, Broward County, Chicago, Dallas, San Diego, and Boston. Thousands of reviews were collected and analyzed using Natural Language Processing (NLP) to classify sentiments as positive or negative, followed by statistical testing (t-tests and basic correlations) on the average scores. The findings reveal that over 90 percent of reviews in each region are positive, indicating that having additional reviews does not significantly enhance prices. However, listings with predominantly positive feedback exhibit slightly higher acceptance rates, suggesting that sentiment polarity, rather than the sheer volume of reviews, is a more critical factor for host success. Additionally, budget listings often gather extensive reviews while maintaining competitive pricing, whereas premium listings sustain higher prices with fewer but highly positive reviews. These results underscore the importance of sentiment quality over quantity in shaping guest behavior and pricing strategies in an overwhelmingly positive review environment.
Via

Apr 16, 2025
Abstract:Multimodal Sentiment Analysis (MSA) faces two critical challenges: the lack of interpretability in the decision logic of multimodal fusion and modality imbalance caused by disparities in inter-modal information density. To address these issues, we propose KAN-MCP, a novel framework that integrates the interpretability of Kolmogorov-Arnold Networks (KAN) with the robustness of the Multimodal Clean Pareto (MCPareto) framework. First, KAN leverages its univariate function decomposition to achieve transparent analysis of cross-modal interactions. This structural design allows direct inspection of feature transformations without relying on external interpretation tools, thereby ensuring both high expressiveness and interpretability. Second, the proposed MCPareto enhances robustness by addressing modality imbalance and noise interference. Specifically, we introduce the Dimensionality Reduction and Denoising Modal Information Bottleneck (DRD-MIB) method, which jointly denoises and reduces feature dimensionality. This approach provides KAN with discriminative low-dimensional inputs to reduce the modeling complexity of KAN while preserving critical sentiment-related information. Furthermore, MCPareto dynamically balances gradient contributions across modalities using the purified features output by DRD-MIB, ensuring lossless transmission of auxiliary signals and effectively alleviating modality imbalance. This synergy of interpretability and robustness not only achieves superior performance on benchmark datasets such as CMU-MOSI, CMU-MOSEI, and CH-SIMS v2 but also offers an intuitive visualization interface through KAN's interpretable architecture.
Via

Apr 23, 2025
Abstract:Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.
Via

Apr 22, 2025
Abstract:The human-level performance of Large Language Models (LLMs) across various tasks has raised expectations for the potential of Artificial Intelligence (AI) to possess emotions someday. To explore the capability of current LLMs to express emotions in their outputs, we conducted an experiment using several LLMs (OpenAI GPT, Google Gemini, Meta Llama3, and Cohere Command R+) to role-play as agents answering questions with specified emotional states. We defined the emotional states using Russell's Circumplex model, a well-established framework that characterizes emotions along the sleepy-activated (arousal) and pleasure-displeasure (valence) axes. We chose this model for its simplicity, utilizing two continuous parameters, which allows for better controllability in applications involving continuous changes in emotional states. The responses generated were evaluated using a sentiment analysis model, independent of the LLMs, trained on the GoEmotions dataset. The evaluation showed that the emotional states of the generated answers were consistent with the specifications, demonstrating the LLMs' capability for emotional expression. This indicates the potential for LLM-based AI agents to simulate emotions, opening up a wide range of applications for emotion-based interactions, such as advisors or consultants who can provide advice or opinions with a personal touch.
* 14 pages, 8 figures, accepted to the Natural Language Processing for
Digital Humanities (NLP4DH) workshop at NAACL 2025
Via

Apr 14, 2025
Abstract:Sentiment analysis is a crucial task in natural language processing (NLP) that enables the extraction of meaningful insights from textual data, particularly from dynamic platforms like Twitter and IMDB. This study explores a hybrid framework combining transformer-based models, specifically BERT, GPT-2, RoBERTa, XLNet, and DistilBERT, to improve sentiment classification accuracy and robustness. The framework addresses challenges such as noisy data, contextual ambiguity, and generalization across diverse datasets by leveraging the unique strengths of these models. BERT captures bidirectional context, GPT-2 enhances generative capabilities, RoBERTa optimizes contextual understanding with larger corpora and dynamic masking, XLNet models dependency through permutation-based learning, and DistilBERT offers efficiency with reduced computational overhead while maintaining high accuracy. We demonstrate text cleaning, tokenization, and feature extraction using Term Frequency Inverse Document Frequency (TF-IDF) and Bag of Words (BoW), ensure high-quality input data for the models. The hybrid approach was evaluated on benchmark datasets Sentiment140 and IMDB, achieving superior accuracy rates of 94\% and 95\%, respectively, outperforming standalone models. The results validate the effectiveness of combining multiple transformer models in ensemble-like setups to address the limitations of individual architectures. This research highlights its applicability to real-world tasks such as social media monitoring, customer sentiment analysis, and public opinion tracking which offers a pathway for future advancements in hybrid NLP frameworks.
* 41 pages, 12 figures, includes algorithm and comparative tables
Via

Apr 22, 2025
Abstract:News data have become an essential resource across various disciplines, including economics, finance, management, social sciences, and computer science. Researchers leverage newspaper articles to study economic trends, market dynamics, corporate strategies, public perception, political discourse, and the evolution of public opinion. Additionally, news datasets have been instrumental in training large-scale language models, with applications in sentiment analysis, fake news detection, and automated news summarization. Despite their significance, access to comprehensive news corpora remains a key challenge. Many full-text news providers, such as Factiva and LexisNexis, require costly subscriptions, while free alternatives often suffer from incomplete data and transparency issues. This paper presents a novel approach to obtaining full-text newspaper articles at near-zero cost by leveraging data from the Global Database of Events, Language, and Tone (GDELT). Specifically, we focus on the GDELT Web News NGrams 3.0 dataset, which provides high-frequency updates of n-grams extracted from global online news sources. We provide Python code to reconstruct full-text articles from these n-grams by identifying overlapping textual fragments and intelligently merging them. Our method enables researchers to access structured, large-scale newspaper data for text analysis while overcoming the limitations of existing proprietary datasets. The proposed approach enhances the accessibility of news data for empirical research, facilitating applications in economic forecasting, computational social science, and natural language processing.
Via

Apr 15, 2025
Abstract:Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+3.1\% F1 and +5.4\% precision on Twitter2015).
* submitted to ACM MM2025
Via
