The analysis of conversational dynamics has gained increasing importance with the rise of large language model-based systems, which interact with users across diverse contexts. In this work, we propose a novel computational framework for constructing conversational graphs that capture the flow and structure of loosely organized dialogues, referred to as quasi-patterned conversations. We introduce the Filter & Reconnect method, a novel graph simplification technique that minimizes noise while preserving semantic coherence and structural integrity of conversational graphs. Through comparative analysis, we demonstrate that the use of large language models combined with our graph simplification technique has resulted in semantic metric S increasing by a factor of 2.06 compared to previous approaches while simultaneously enforcing a tree-like structure with 0 {\delta}-hyperbolicity, ensuring optimal clarity in conversation modeling. This work provides a computational method for analyzing large-scale dialogue datasets, with practical applications related to monitoring automated systems such as chatbots, dialogue management tools, and user behavior analytics.
Generative AI has demonstrated strong potential in healthcare, from clinical decision support to patient-facing chatbots that improve outcomes. A critical challenge for deployment is effective human-AI communication, where content must be both personalized and understandable. We introduce MedReadCtrl, a readability-controlled instruction tuning framework that enables LLMs to adjust output complexity without compromising meaning. Evaluations of nine datasets and three tasks across medical and general domains show that MedReadCtrl achieves significantly lower readability instruction-following errors than GPT-4 (e.g., 1.39 vs. 1.59 on ReadMe, p<0.001) and delivers substantial gains on unseen clinical tasks (e.g., +14.7 ROUGE-L, +6.18 SARI on MTSamples). Experts consistently preferred MedReadCtrl (71.7% vs. 23.3%), especially at low literacy levels. These gains reflect MedReadCtrl's ability to restructure clinical content into accessible, readability-aligned language while preserving medical intent, offering a scalable solution to support patient education and expand equitable access to AI-enabled care.
Emotion and intent recognition from speech is essential and has been widely investigated in human-computer interaction. The rapid development of social media platforms, chatbots, and other technologies has led to a large volume of speech data streaming from users. Nevertheless, annotating such data manually is expensive, making it challenging to train machine learning models for recognition purposes. To this end, we propose applying semi-supervised learning to incorporate a large scale of unlabelled data alongside a relatively smaller set of labelled data. We train end-to-end acoustic and linguistic models, each employing multi-task learning for emotion and intent recognition. Two semi-supervised learning approaches, including fix-match learning and full-match learning, are compared. The experimental results demonstrate that the semi-supervised learning approaches improve model performance in speech emotion and intent recognition from both acoustic and text data. The late fusion of the best models outperforms the acoustic and text baselines by joint recognition balance metrics of 12.3% and 10.4%, respectively.
JoyTTS is an end-to-end spoken chatbot that combines large language models (LLM) with text-to-speech (TTS) technology, featuring voice cloning capabilities. This project is built upon the open-source MiniCPM-o and CosyVoice2 models and trained on 2000 hours of conversational data. We have also provided the complete training code to facilitate further development and optimization by the community. On the testing machine seed-tts-zh, it achieves a SS (speaker similarity) score of 0.73 and a WER (Word Error Rate) of 5.09. The code and models, along with training and inference scripts, are available at https://github.com/jdh-algo/JoyTTS.git.
Conversational agents have made significant progress since ELIZA, expanding their role across various domains, including healthcare, education, and customer service. As these agents become increasingly integrated into daily human interactions, the need for emotional intelligence, particularly empathetic listening, becomes increasingly essential. In this study, we explore how Large Language Models (LLMs) respond when tasked with generating emotionally rich interactions. Starting from a small dataset manually crafted by an expert to reflect empathic behavior, we extended the conversations using two LLMs: ChatGPT and Gemini. We analyzed the emotional progression of the dialogues using both sentiment analysis (via VADER) and expert assessments. While the generated conversations often mirrored the intended emotional structure, human evaluation revealed important differences in the perceived empathy and coherence of the responses. These findings suggest that emotion modeling in dialogues requires not only structural alignment in the expressed emotions but also qualitative depth, highlighting the importance of combining automated and humancentered methods in the development of emotionally competent agents.
A crucial factor for successful human and AI interaction is the ability of language models or chatbots to follow human instructions precisely. A common feature of instructions are output constraints like ``only answer with yes or no" or ``mention the word `abrakadabra' at least 3 times" that the user adds to craft a more useful answer. Even today's strongest models struggle with fulfilling such constraints. We find that most models strongly overfit on a small set of verifiable constraints from the benchmarks that test these abilities, a skill called precise instruction following, and are not able to generalize well to unseen output constraints. We introduce a new benchmark, IFBench, to evaluate precise instruction following generalization on 58 new, diverse, and challenging verifiable out-of-domain constraints. In addition, we perform an extensive analysis of how and on what data models can be trained to improve precise instruction following generalization. Specifically, we carefully design constraint verification modules and show that reinforcement learning with verifiable rewards (RLVR) significantly improves instruction following. In addition to IFBench, we release 29 additional new hand-annotated training constraints and verification functions, RLVR training prompts, and code.
Domain specific chatbot applications often involve multi step interactions, such as refining search filters, selecting multiple items, or performing comparisons. Traditional graphical user interfaces (GUIs) handle these workflows by providing explicit "Submit" (commit data) and "Reset" (discard data) actions, allowing back-end systems to track user intent unambiguously. In contrast, conversational agents rely on subtle language cues, which can lead to confusion and incomplete context management. This paper proposes modeling these GUI inspired metaphors acknowledgment (submit like) and context switching (reset-like) as explicit tasks within large language model (LLM) prompts. By capturing user acknowledgment, reset actions, and chain of thought (CoT) reasoning as structured session data, we preserve clarity, reduce user confusion, and align domain-specific chatbot interactions with back-end logic. We demonstrate our approach in hotel booking and customer management scenarios, highlighting improvements in multi-turn task coherence, user satisfaction, and efficiency.
Large language models (LLMs) are excellent at maintaining high-level, convincing dialogues. They are being fast deployed as chatbots and evaluators in sensitive areas, such as peer review and mental health applications. This, along with the disparate accounts on their reasoning capabilities, calls for a closer examination of LLMs and their comprehension of dialogue. In this work we begin by evaluating LLMs' ability to maintain a debate--one of the purest yet most complex forms of human communication. Then we measure how this capability relates to their understanding of what is being talked about, namely, their comprehension of dialogical structures and the pragmatic context. We find that LLMs are capable of maintaining coherent, persuasive debates, often swaying the beliefs of participants and audiences alike. We also note that awareness or suspicion of AI involvement encourage people to be more critical of the arguments made. When polling LLMs on their comprehension of deeper structures of dialogue, however, they cannot demonstrate said understanding. Our findings tie the shortcomings of LLMs-as-evaluators to their (in)ability to understand the context. More broadly, for the field of argumentation theory we posit that, if an agent can convincingly maintain a dialogue, it is not necessary for it to know what it is talking about. Hence, the modelling of pragmatic context and coherence are secondary to effectiveness.
There is justifiable interest in leveraging conversational AI (CAI) for health across the majority world, but to be effective, CAI must respond appropriately within culturally and linguistically diverse contexts. Therefore, we need ways to address the fact that current LLMs exclude many lived experiences globally. Various advances are underway which focus on top-down approaches and increasing training data. In this paper, we aim to complement these with a bottom-up locally-grounded approach based on qualitative data collected during participatory workshops in Latin America. Our goal is to construct a rich and human-centred understanding of: a) potential areas of cultural misalignment in digital health; b) regional perspectives on chatbots for health and c)strategies for creating culturally-appropriate CAI; with a focus on the understudied Latin American context. Our findings show that academic boundaries on notions of culture lose meaning at the ground level and technologies will need to engage with a broader framework; one that encapsulates the way economics, politics, geography and local logistics are entangled in cultural experience. To this end, we introduce a framework for 'Pluriversal Conversational AI for Health' which allows for the possibility that more relationality and tolerance, rather than just more data, may be called for.




We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.