Most people are multilingual, and most multilinguals code-switch, yet the characteristics of code-switched language are not fully understood. We developed a chatbot capable of completing a Map Task with human participants using code-switched Spanish and English. In two experiments, we prompted the bot to code-switch according to different strategies, examining (1) the feasibility of such experiments for investigating bilingual language use, and (2) whether participants would be sensitive to variations in discourse and grammatical patterns. Participants generally enjoyed code-switching with our bot as long as it produced predictable code-switching behavior; when code-switching was random or ungrammatical (as when producing unattested incongruent mixed-language noun phrases, such as `la fork'), participants enjoyed the task less and were less successful at completing it. These results underscore the potential downsides of deploying insufficiently developed multilingual language technology, while also illustrating the promise of such technology for conducting research on bilingual language use.
Evaluating the abilities of large models and manifesting their gaps are challenging. Current benchmarks adopt either ground-truth-based score-form evaluation on static datasets or indistinct textual chatbot-style human preferences collection, which may not provide users with immediate, intuitive, and perceptible feedback on performance differences. In this paper, we introduce BioMotion Arena, a novel framework for evaluating large language models (LLMs) and multimodal large language models (MLLMs) via visual animation. Our methodology draws inspiration from the inherent visual perception of motion patterns characteristic of living organisms that utilizes point-light source imaging to amplify the performance discrepancies between models. Specifically, we employ a pairwise comparison evaluation and collect more than 45k votes for 53 mainstream LLMs and MLLMs on 90 biological motion variants. Data analyses show that the crowd-sourced human votes are in good agreement with those of expert raters, demonstrating the superiority of our BioMotion Arena in offering discriminative feedback. We also find that over 90\% of evaluated models, including the cutting-edge open-source InternVL3 and proprietary Claude-4 series, fail to produce fundamental humanoid point-light groups, much less smooth and biologically plausible motions. This enables BioMotion Arena to serve as a challenging benchmark for performance visualization and a flexible evaluation framework without restrictions on ground-truth.
Contemporary industrial cyber-physical production systems (CPPS) composed of robotic workcells face significant challenges in the analysis of undesired conditions due to the flexibility of Industry 4.0 that disrupts traditional quality assurance mechanisms. This paper presents a novel industry-oriented semantic model called Product-Process-Resource Asset Knowledge Graph (PPR-AKG), which is designed to analyze and mitigate undesired conditions in flexible CPPS. Built on top of the well-proven Product-Process-Resource (PPR) model originating from ISA-95 and VDI-3682, a comprehensive OWL ontology addresses shortcomings of conventional model-driven engineering for CPPS, particularly inadequate undesired condition and error handling representation. The integration of semantic technologies with large language models (LLMs) provides intuitive interfaces for factory operators, production planners, and engineers to interact with the entire model using natural language. Evaluation with the use case addressing electric vehicle battery remanufacturing demonstrates that the PPR-AKG approach efficiently supports resource allocation based on explicitly represented capabilities as well as identification and mitigation of undesired conditions in production. The key contributions include (1) a holistic PPR-AKG model capturing multi-dimensional production knowledge, and (2) the useful combination of the PPR-AKG with LLM-based chatbots for human interaction.
Generative AI is no longer a peripheral tool in higher education. It is rapidly evolving into a general-purpose infrastructure that reshapes how knowledge is generated, mediated, and validated. This paper presents findings from a controlled experiment evaluating a Socratic AI Tutor, a large language model designed to scaffold student research question development through structured dialogue grounded in constructivist theory. Conducted with 65 pre-service teacher students in Germany, the study compares interaction with the Socratic Tutor to engagement with an uninstructed AI chatbot. Students using the Socratic Tutor reported significantly greater support for critical, independent, and reflective thinking, suggesting that dialogic AI can stimulate metacognitive engagement and challenging recent narratives of de-skilling due to generative AI usage. These findings serve as a proof of concept for a broader pedagogical shift: the use of multi-agent systems (MAS) composed of specialised AI agents. To conceptualise this, we introduce the notion of orchestrated MAS, modular, pedagogically aligned agent constellations, curated by educators, that support diverse learning trajectories through differentiated roles and coordinated interaction. To anchor this shift, we propose an adapted offer-and-use model, in which students appropriate instructional offers from these agents. Beyond technical feasibility, we examine system-level implications for higher education institutions and students, including funding necessities, changes to faculty roles, curriculars, competencies and assessment practices. We conclude with a comparative cost-effectiveness analysis highlighting the scalability of such systems. In sum, this study contributes both empirical evidence and a conceptual roadmap for hybrid learning ecosystems that embed human-AI co-agency and pedagogical alignment.
A survey of 26 CS students reveals that AI coding assistants are mainly used for writing code (second to online searches) while AI chatbots are the top resource for debugging. Participants with different coding experience prefer online help over direct human help from peers and instructors.
Large language models (LLMs) are trained on large corpora, yet it is unclear whether they can reason about the information present within their training data. We design experiments to study out-of-context abduction in LLMs, the ability to infer the most plausible explanations for observations using relevant facts present in training data. We train treatment LLMs on names and behavior descriptions of fictitious chatbots, but not on examples of dialogue with the chatbots. We find that OpenAI's GPT 4o LLM can correctly infer at least one chatbot's name after observing example responses characteristic of that chatbot. We also find that previously training GPT 4o on descriptions of a chatbot's behavior allows it to display behaviors more characteristic of the chatbot when iteratively trained to display such behaviors. Our results have implications for situational awareness in LLMs and, therefore, for AI safety.
Large Language Models (LLMs) process millions of queries daily, making efficient response caching a compelling optimization for reducing cost and latency. However, preserving relevance to user queries using this approach proves difficult due to the personalized nature of chatbot interactions and the limited accuracy of semantic similarity search. To address this, we present TweakLLM, a novel routing architecture that employs a lightweight LLM to dynamically adapt cached responses to incoming prompts. Through comprehensive evaluation, including user studies with side-by-side comparisons, satisfaction voting, as well as multi-agent LLM debates, we demonstrate that TweakLLM maintains response quality comparable to frontier models while significantly improving cache effectiveness. Our results across real-world datasets highlight TweakLLM as a scalable, resource-efficient caching solution for high-volume LLM deployments without compromising user experience.
Building on prior research on Generative AI (GenAI) and related tools for programming education, we developed SCRIPT, a chatbot based on ChatGPT-4o-mini, to support novice learners. SCRIPT allows for open-ended interactions and structured guidance through predefined prompts. We evaluated the tool via an experiment with 136 students from an introductory programming course at a large German university and analyzed how students interacted with SCRIPT while solving programming tasks with a focus on their feedback preferences. The results reveal that students' feedback requests seem to follow a specific sequence. Moreover, the chatbot responses aligned well with students' requested feedback types (in 75%), and it adhered to the system prompt constraints. These insights inform the design of GenAI-based learning support systems and highlight challenges in balancing guidance and flexibility in AI-assisted tools.
Risk and Quality (R&Q) assurance in highly regulated industries requires constant navigation of complex regulatory frameworks, with employees handling numerous daily queries demanding accurate policy interpretation. Traditional methods relying on specialized experts create operational bottlenecks and limit scalability. We present a novel Retrieval Augmented Generation (RAG) system leveraging Large Language Models (LLMs), hybrid search and relevance boosting to enhance R&Q query processing. Evaluated on 124 expert-annotated real-world queries, our actively deployed system demonstrates substantial improvements over traditional RAG approaches. Additionally, we perform an extensive hyperparameter analysis to compare and evaluate multiple configuration setups, delivering valuable insights to practitioners.
Asthma-related deaths in the UK are the highest in Europe, and only 30% of patients access basic care. There is a need for alternative approaches to reaching people with asthma in order to provide health education, self-management support and bridges to care. Automated conversational agents (specifically, mobile chatbots) present opportunities for providing alternative and individually tailored access to health education, self-management support and risk self-assessment. But would patients engage with a chatbot, and what factors influence engagement? We present results from a patient survey (N=1257) devised by a team of asthma clinicians, patients, and technology developers, conducted to identify optimal factors for efficacy, value and engagement for a chatbot. Results indicate that most adults with asthma (53%) are interested in using a chatbot and the patients most likely to do so are those who believe their asthma is more serious and who are less confident about self-management. Results also indicate enthusiasm for 24/7 access, personalisation, and for WhatsApp as the preferred access method (compared to app, voice assistant, SMS or website). Obstacles to uptake include security/privacy concerns and skepticism of technological capabilities. We present detailed findings and consolidate these into 7 recommendations for developers for optimising efficacy of chatbot-based health support.