Abstract:The proliferation of textual data containing sensitive personal information across various domains requires robust anonymization techniques to protect privacy and comply with regulations, while preserving data usability for diverse and crucial downstream tasks. This survey provides a comprehensive overview of current trends and recent advances in text anonymization techniques. We begin by discussing foundational approaches, primarily centered on Named Entity Recognition, before examining the transformative impact of Large Language Models, detailing their dual role as sophisticated anonymizers and potent de-anonymization threats. The survey further explores domain-specific challenges and tailored solutions in critical sectors such as healthcare, law, finance, and education. We investigate advanced methodologies incorporating formal privacy models and risk-aware frameworks, and address the specialized subfield of authorship anonymization. Additionally, we review evaluation frameworks, comprehensive metrics, benchmarks, and practical toolkits for real-world deployment of anonymization solutions. This review consolidates current knowledge, identifies emerging trends and persistent challenges, including the evolving privacy-utility trade-off, the need to address quasi-identifiers, and the implications of LLM capabilities, and aims to guide future research directions for both academics and practitioners in this field.
Abstract:The emergence of advanced reasoning capabilities in Large Language Models (LLMs) marks a transformative development in healthcare applications. Beyond merely expanding functional capabilities, these reasoning mechanisms enhance decision transparency and explainability-critical requirements in medical contexts. This survey examines the transformation of medical LLMs from basic information retrieval tools to sophisticated clinical reasoning systems capable of supporting complex healthcare decisions. We provide a thorough analysis of the enabling technological foundations, with a particular focus on specialized prompting techniques like Chain-of-Thought and recent breakthroughs in Reinforcement Learning exemplified by DeepSeek-R1. Our investigation evaluates purpose-built medical frameworks while also examining emerging paradigms such as multi-agent collaborative systems and innovative prompting architectures. The survey critically assesses current evaluation methodologies for medical validation and addresses persistent challenges in field interpretation limitations, bias mitigation strategies, patient safety frameworks, and integration of multimodal clinical data. Through this survey, we seek to establish a roadmap for developing reliable LLMs that can serve as effective partners in clinical practice and medical research.
Abstract:The auditing of financial documents, historically a labor-intensive process, stands on the precipice of transformation. AI-driven solutions have made inroads into streamlining this process by recommending pertinent text passages from financial reports to align with the legal requirements of accounting standards. However, a glaring limitation remains: these systems commonly fall short in verifying if the recommended excerpts indeed comply with the specific legal mandates. Hence, in this paper, we probe the efficiency of publicly available Large Language Models (LLMs) in the realm of regulatory compliance across different model configurations. We place particular emphasis on comparing cutting-edge open-source LLMs, such as Llama-2, with their proprietary counterparts like OpenAI's GPT models. This comparative analysis leverages two custom datasets provided by our partner PricewaterhouseCoopers (PwC) Germany. We find that the open-source Llama-2 70 billion model demonstrates outstanding performance in detecting non-compliance or true negative occurrences, beating all their proprietary counterparts. Nevertheless, proprietary models such as GPT-4 perform the best in a broad variety of scenarios, particularly in non-English contexts.
Abstract:Risk and Quality (R&Q) assurance in highly regulated industries requires constant navigation of complex regulatory frameworks, with employees handling numerous daily queries demanding accurate policy interpretation. Traditional methods relying on specialized experts create operational bottlenecks and limit scalability. We present a novel Retrieval Augmented Generation (RAG) system leveraging Large Language Models (LLMs), hybrid search and relevance boosting to enhance R&Q query processing. Evaluated on 124 expert-annotated real-world queries, our actively deployed system demonstrates substantial improvements over traditional RAG approaches. Additionally, we perform an extensive hyperparameter analysis to compare and evaluate multiple configuration setups, delivering valuable insights to practitioners.
Abstract:Auditing financial documents is a very tedious and time-consuming process. As of today, it can already be simplified by employing AI-based solutions to recommend relevant text passages from a report for each legal requirement of rigorous accounting standards. However, these methods need to be fine-tuned regularly, and they require abundant annotated data, which is often lacking in industrial environments. Hence, we present ZeroShotALI, a novel recommender system that leverages a state-of-the-art large language model (LLM) in conjunction with a domain-specifically optimized transformer-based text-matching solution. We find that a two-step approach of first retrieving a number of best matching document sections per legal requirement with a custom BERT-based model and second filtering these selections using an LLM yields significant performance improvements over existing approaches.
Abstract:In all domains and sectors, the demand for intelligent systems to support the processing and generation of digital content is rapidly increasing. The availability of vast amounts of content and the pressure to publish new content quickly and in rapid succession requires faster, more efficient and smarter processing and generation methods. With a consortium of ten partners from research and industry and a broad range of expertise in AI, Machine Learning and Language Technologies, the QURATOR project, funded by the German Federal Ministry of Education and Research, develops a sustainable and innovative technology platform that provides services to support knowledge workers in various industries to address the challenges they face when curating digital content. The project's vision and ambition is to establish an ecosystem for content curation technologies that significantly pushes the current state of the art and transforms its region, the metropolitan area Berlin-Brandenburg, into a global centre of excellence for curation technologies.