LLM-as-judge evaluation has become the de facto standard for scaling model assessment, but the practice is statistically unsound: uncalibrated scores can invert preferences, naive confidence intervals on uncalibrated scores achieve near-0% coverage, and importance-weighted estimators collapse under limited overlap despite high effective sample size (ESS). We introduce Causal Judge Evaluation (CJE), a framework that fixes all three failures. On n=4,961 Chatbot Arena prompts (after filtering from 5k), CJE achieves 99% pairwise ranking accuracy at full sample size (94% averaged across configurations), matching oracle quality, at 14x lower cost (for ranking 5 policies) by calibrating a 16x cheaper judge on just 5% oracle labels (~250 labels). CJE combines three components: (i) AutoCal-R, reward calibration via mean-preserving isotonic regression; (ii) SIMCal-W, weight stabilization via stacking of S-monotone candidates; and (iii) Oracle-Uncertainty Aware (OUA) inference that propagates calibration uncertainty into confidence intervals. We formalize the Coverage-Limited Efficiency (CLE) diagnostic, which explains why IPS-style estimators fail even when ESS exceeds 90%: the logger rarely visits regions where target policies concentrate. Key findings: SNIPS inverts rankings even with reward calibration (38% pairwise, negative Kendall's tau) due to weight instability; calibrated IPS remains near-random (47%) despite weight stabilization, consistent with CLE; OUA improves coverage from near-0% to ~86% (Direct) and ~96% (stacked-DR), where naive intervals severely under-cover.
Language identification is a crucial first step in multilingual systems such as chatbots and virtual assistants, enabling linguistically and culturally accurate user experiences. Errors at this stage can cascade into downstream failures, setting a high bar for accuracy. Yet, existing language identification tools struggle with key cases -- such as music requests where the song title and user language differ. Open-source tools like LangDetect, FastText are fast but less accurate, while large language models, though effective, are often too costly for low-latency or low-resource settings. We introduce PolyLingua, a lightweight Transformer-based model for in-domain language detection and fine-grained language classification. It employs a two-level contrastive learning framework combining instance-level separation and class-level alignment with adaptive margins, yielding compact and well-separated embeddings even for closely related languages. Evaluated on two challenging datasets -- Amazon Massive (multilingual digital assistant utterances) and a Song dataset (music requests with frequent code-switching) -- PolyLingua achieves 99.25% F1 and 98.15% F1, respectively, surpassing Sonnet 3.5 while using 10x fewer parameters, making it ideal for compute- and latency-constrained environments.




The Poultry industry plays a vital role in global food security, yet small- and medium-scale farmers frequently lack timely access to expert-level support for disease diagnosis, nutrition planning, and management decisions. With rising climate stress, unpredictable feed prices, and persistent disease threats, poultry producers often struggle to make quick, informed decisions. Therefore, there is a critical need for intelligent, data-driven systems that can deliver reliable, on-demand consultation. This paper presents PoultryTalk, a novel multi-modal Retrieval-Augmented Generation (RAG) system designed to provide real-time expert guidance through text and image-based interaction. PoultryTalk uses OpenAI's text-embedding-3-small and GPT-4o to provide smart, context-aware poultry management advice from text, images, or questions. System usability and performance were evaluated using 200 expert-verified queries and feedback from 34 participants who submitted 267 queries to the PoultryTalk prototype. The expert-verified benchmark queries confirmed strong technical performance, achieving a semantic similarity of 84.0% and an average response latency of 3.6 seconds. Compared with OpenAI's GPT-4o, PoultryTalk delivered more accurate and reliable information related to poultry. Based on participants' evaluations, PoultryTalk achieved a response accuracy of 89.9%, with about 9.1% of responses rated as incorrect. A post-use survey indicated high user satisfaction: 95.6% of participants reported that the chatbot provided "always correct" and "mostly correct" answers. 82.6% indicated they would recommend the tool, and 17.4% responded "maybe." These results collectively demonstrate that PoultryTalk not only delivers accurate, contextually relevant information but also demonstrates strong user acceptance and scalability potential.
Retrieval-augmented generation (RAG) has rapidly emerged as a transformative approach for integrating large language models into clinical and biomedical workflows. However, privacy risks, such as protected health information (PHI) exposure, remain inconsistently mitigated. This review provides a thorough analysis of the current landscape of RAG applications in healthcare, including (i) sensitive data type across clinical scenarios, (ii) the associated privacy risks, (iii) current and emerging data-privacy protection mechanisms and (iv) future direction for patient data privacy protection. We synthesize 23 articles on RAG applications in healthcare and systematically analyze privacy challenges through a pipeline-structured framework encompassing data storage, transmission, retrieval and generation stages, delineating potential failure modes, their underlying causes in threat models and system mechanisms, and their practical implications. Building on this analysis, we critically review 17 articles on privacy-preserving strategies for RAG systems. Our evaluation reveals critical gaps, including insufficient clinical validation, absence of standardized evaluation frameworks, and lack of automated assessment tools. We propose actionable directions based on these limitations and conclude with a call to action. This review provides researchers and practitioners with a structured framework for understanding privacy vulnerabilities in healthcare RAG and offers a roadmap toward developing systems that achieve both clinical effectiveness and robust privacy preservation.
We present online learning of Hierarchical Task Network (HTN) methods in the context of integrated HTN planning and LLM-based chatbots. Methods indicate when and how to decompose tasks into subtasks. Our method learner is built on top of the ChatHTN planner. ChatHTN queries ChatGPT to generate a decomposition of a task into primitive tasks when no applicable method for the task is available. In this work, we extend ChatHTN. Namely, when ChatGPT generates a task decomposition, ChatHTN learns from it, akin to memoization. However, unlike memoization, it learns a generalized method that applies not only to the specific instance encountered, but to other instances of the same task. We conduct experiments on two domains and demonstrate that our online learning procedure reduces the number of calls to ChatGPT while solving at least as many problems, and in some cases, even more.
Ensuring worker safety remains a critical challenge in modern manufacturing environments. Industry 5.0 reorients the prevailing manufacturing paradigm toward more human-centric operations. Using a design science research methodology, we identify three essential requirements for next-generation safety training systems: high accuracy, low latency, and low cost. We introduce a multimodal chatbot powered by large language models that meets these design requirements. The chatbot uses retrieval-augmented generation to ground its responses in curated regulatory and technical documentation. To evaluate our solution, we developed a domain-specific benchmark of expert-validated question and answer pairs for three representative machines: a Bridgeport manual mill, a Haas TL-1 CNC lathe, and a Universal Robots UR5e collaborative robot. We tested 24 RAG configurations using a full-factorial design and assessed them with automated evaluations of correctness, latency, and cost. Our top 2 configurations were then evaluated by ten industry experts and academic researchers. Our results show that retrieval strategy and model configuration have a significant impact on performance. The top configuration (selected for chatbot deployment) achieved an accuracy of 86.66%, an average latency of 10.04 seconds, and an average cost of $0.005 per query. Overall, our work provides three contributions: an open-source, domain-grounded safety training chatbot; a validated benchmark for evaluating AI-assisted safety instruction; and a systematic methodology for designing and assessing AI-enabled instructional and immersive safety training systems for Industry 5.0 environments.
Students often report difficulties in accessing day-to-day academic information, which is usually spread across numerous institutional documents and websites. This fragmentation results in a lack of clarity and causes confusion about routine university information. This project proposes the development of a chatbot using Generative Artificial Intelligence (GenAI) and Retrieval-Augmented Generation (RAG) to simplify access to such information. Several GenAI models were tested and evaluated based on quality metrics and the LLM-as-a-Judge approach. Among them, Gemini 2.0 Flash stood out for its quality and speed, and Gemma 3n for its good performance and open-source nature.
Deep neural networks (DNNs) form the cornerstone of modern AI services, supporting a wide range of applications, including autonomous driving, chatbots, and recommendation systems. As models increase in size and complexity, DNN workloads such as training and inference tasks impose unprecedented demands on distributed computing resources, making accurate runtime prediction essential for optimizing development and resource allocation. Traditional methods rely on additive computational unit models, limiting their accuracy and generalizability. In contrast, graph-enhanced modeling improves performance but significantly increases data collection costs. Therefore, there is a critical need for a method that strikes a balance between accuracy, generalizability, and data collection costs. To address these challenges, we propose ScaleDL, a novel runtime prediction framework that combines nonlinear layer-wise modeling with graph neural network (GNN)-based cross-layer interaction mechanism, enabling accurate DNN runtime prediction and hierarchical generalizability across different network architectures. Additionally, we employ the D-optimal method to reduce data collection costs. Experiments on the workloads of five popular DNN models demonstrate that ScaleDL enhances runtime prediction accuracy and generalizability, achieving 6 times lower MRE and 5 times lower RMSE compared to baseline models.
Large Language Models (LLMs) are increasingly tasked with creative generation, including the simulation of fictional characters. However, their ability to portray non-prosocial, antagonistic personas remains largely unexamined. We hypothesize that the safety alignment of modern LLMs creates a fundamental conflict with the task of authentically role-playing morally ambiguous or villainous characters. To investigate this, we introduce the Moral RolePlay benchmark, a new dataset featuring a four-level moral alignment scale and a balanced test set for rigorous evaluation. We task state-of-the-art LLMs with role-playing characters from moral paragons to pure villains. Our large-scale evaluation reveals a consistent, monotonic decline in role-playing fidelity as character morality decreases. We find that models struggle most with traits directly antithetical to safety principles, such as ``Deceitful'' and ``Manipulative'', often substituting nuanced malevolence with superficial aggression. Furthermore, we demonstrate that general chatbot proficiency is a poor predictor of villain role-playing ability, with highly safety-aligned models performing particularly poorly. Our work provides the first systematic evidence of this critical limitation, highlighting a key tension between model safety and creative fidelity. Our benchmark and findings pave the way for developing more nuanced, context-aware alignment methods.
How do we make a meaningful comparison of a large language model's knowledge of the law in one place compared to another? Quantifying these differences is critical to understanding if the quality of the legal information obtained by users of LLM-based chatbots varies depending on their location. However, obtaining meaningful comparative metrics is challenging because legal institutions in different places are not themselves easily comparable. In this work we propose a methodology to obtain place-to-place metrics based on the comparative law concept of functionalism. We construct a dataset of factual scenarios drawn from Reddit posts by users seeking legal advice for family, housing, employment, crime and traffic issues. We use these to elicit a summary of a law from the LLM relevant to each scenario in Los Angeles, London and Sydney. These summaries, typically of a legislative provision, are manually evaluated for hallucinations. We show that the rate of hallucination of legal information by leading closed-source LLMs is significantly associated with place. This suggests that the quality of legal solutions provided by these models is not evenly distributed across geography. Additionally, we show a strong negative correlation between hallucination rate and the frequency of the majority response when the LLM is sampled multiple times, suggesting a measure of uncertainty of model predictions of legal facts.