AI co-writing systems challenge long held ideals about agency and ownership in the creative process, thereby hindering widespread adoption. In order to address this, we investigate conceptions of agency and ownership in AI creative co-writing. Drawing on insights from a review of commercial systems, we developed three co-writing systems with identical functionality but distinct interface metaphors: agentic, tool-like, and magical. Through interviews with professional and non-professional writers (n = 18), we explored how these metaphors influenced participants' sense of control and authorship. Our analysis resulted in a taxonomy of agency and ownership subtypes and underscore how tool-like metaphors shift writers' expected points of control while agentic metaphors foreground conceptual contributions. We argue that interface metaphors not only guide expectations of control but also frame conceptions of authorship. We conclude with recommendations for the design of AI co-writing systems, emphasizing how metaphor shapes user experience and creative practice.
Automated Audio Captioning (AAC) generates captions for audio clips but faces challenges due to limited datasets compared to image captioning. To overcome this, we propose the zero-shot AAC system that leverages pre-trained models, eliminating the need for extensive training. Our approach uses a pre-trained audio CLIP model to extract auditory features and generate a structured prompt, which guides a Large Language Model (LLM) in caption generation. Unlike traditional greedy decoding, our method refines token selection through the audio CLIP model, ensuring alignment with the audio content. Experimental results demonstrate a 35% improvement in NLG mean score (from 4.7 to 7.3) using MAGIC search with the WavCaps model. The performance is heavily influenced by the audio-text matching model and keyword selection, with optimal results achieved using a single keyword prompt, and a 50% performance drop when no keyword list is used.
Humans can recognize an image as an instance of a general concept, beyond simply identifying its objects and their relationships. In this paper, we investigate 1. The extent to which VLMs have this concept abstraction capacity, and 2. Strategies for encoding the sort of higher-concept information in images that would enable the resulting VLM model (CLEAR GLASS model) to have this capability to a greater degree. To this end, we introduce a grouped image-caption dataset (MAGIC), which consists of several groups of image captions and for each group a set of associated images and higher-level conceptual labels. We use a novel contrastive loss technique to induce the model to encode in the representation of each image (caption) in a group the information that is common to all members of the image-caption group. Our main contribution is a grouped contrastive loss function based on text-image contrastive groups (outer contrastive loss) as well as an inner loss which measures the distances between image-caption instances in the group. Our training methodology results in the CLEAR GLASS model having the concept abstraction capacity as an emergent capacity because the model is not exposed to the higher-level concepts associated with each group. Instead, the training forces the model to create for each image-caption group a semantic representation that brings it closer to the semantic representation of the higher-level concepts in the latent semantic space. Our experiments show that this training methodology results in a model which shows improvement in abstract concept recognition compared to SOTA models.
We present LightVLA, a simple yet effective differentiable token pruning framework for vision-language-action (VLA) models. While VLA models have shown impressive capability in executing real-world robotic tasks, their deployment on resource-constrained platforms is often bottlenecked by the heavy attention-based computation over large sets of visual tokens. LightVLA addresses this challenge through adaptive, performance-driven pruning of visual tokens: It generates dynamic queries to evaluate visual token importance, and adopts Gumbel softmax to enable differentiable token selection. Through fine-tuning, LightVLA learns to preserve the most informative visual tokens while pruning tokens which do not contribute to task execution, thereby improving efficiency and performance simultaneously. Notably, LightVLA requires no heuristic magic numbers and introduces no additional trainable parameters, making it compatible with modern inference frameworks. Experimental results demonstrate that LightVLA outperforms different VLA models and existing token pruning methods across diverse tasks on the LIBERO benchmark, achieving higher success rates with substantially reduced computational overhead. Specifically, LightVLA reduces FLOPs and latency by 59.1% and 38.2% respectively, with a 2.9% improvement in task success rate. Meanwhile, we also investigate the learnable query-based token pruning method LightVLA* with additional trainable parameters, which also achieves satisfactory performance. Our work reveals that as VLA pursues optimal performance, LightVLA spontaneously learns to prune tokens from a performance-driven perspective. To the best of our knowledge, LightVLA is the first work to apply adaptive visual token pruning to VLA tasks with the collateral goals of efficiency and performance, marking a significant step toward more efficient, powerful and practical real-time robotic systems.
Generative AI evolves the execution of complex workflows in industry, where the large multimodal model empowers fashion design in the garment industry. Current generation AI models magically transform brainstorming into fancy designs easily, but the fine-grained customization still suffers from text uncertainty without professional background knowledge from end-users. Thus, we propose the Better Understanding Generation (BUG) workflow with LMM to automatically create and fine-grain customize the cloth designs from chat with image-into-prompt. Our framework unleashes users' creative potential beyond words and also lowers the barriers of clothing design/editing without further human involvement. To prove the effectiveness of our model, we propose a new FashionEdit dataset that simulates the real-world clothing design workflow, evaluated from generation similarity, user satisfaction, and quality. The code and dataset: https://github.com/detectiveli/FashionEdit.




Medical Lay Language Generation (MLLG) plays a vital role in improving the accessibility of complex scientific content for broader audiences. Recent literature to MLLG commonly employ parameter-efficient fine-tuning methods such as Low-Rank Adaptation (LoRA) to fine-tuning large language models (LLMs) using paired expert-lay language datasets. However, LoRA struggles with the challenges posed by multi-source heterogeneous MLLG datasets. Specifically, through a series of exploratory experiments, we reveal that standard LoRA fail to meet the requirement for semantic fidelity and diverse lay-style generation in MLLG task. To address these limitations, we propose Magical, an asymmetric LoRA architecture tailored for MLLG under heterogeneous data scenarios. Magical employs a shared matrix $A$ for abstractive summarization, along with multiple isolated matrices $B$ for diverse lay-style generation. To preserve semantic fidelity during the lay language generation process, Magical introduces a Semantic Invariance Constraint to mitigate semantic subspace shifts on matrix $A$. Furthermore, to better adapt to diverse lay-style generation, Magical incorporates the Recommendation-guided Switch, an externally interface to prompt the LLM to switch between different matrices $B$. Experimental results on three real-world lay language generation datasets demonstrate that Magical consistently outperforms prompt-based methods, vanilla LoRA, and its recent variants, while also reducing trainable parameters by 31.66%.
Collectible card games (CCGs) are a difficult genre for AI due to their partial observability, long-term decision-making, and evolving card sets. Due to this, current AI models perform vastly worse than human players at CCG tasks such as deckbuilding and gameplay. In this work, we introduce UrzaGPT, a domain-adapted large language model that recommends real-time drafting decisions in Magic: The Gathering. Starting from an open-weight LLM, we use Low-Rank Adaptation fine-tuning on a dataset of annotated draft logs. With this, we leverage the language modeling capabilities of LLM, and can quickly adapt to different expansions of the game. We benchmark UrzaGPT in comparison to zero-shot LLMs and the state-of-the-art domain-specific model. Untuned, small LLMs like Llama-3-8B are completely unable to draft, but the larger GPT-4o achieves a zero-shot performance of 43%. Using UrzaGPT to fine-tune smaller models, we achieve an accuracy of 66.2% using only 10,000 steps. Despite this not reaching the capability of domain-specific models, we show that solely using LLMs to draft is possible and conclude that using LLMs can enable performant, general, and update-friendly drafting AIs in the future.
Augmented Reality (AR) systems, while enhancing task performance through real-time guidance, pose risks of inducing cognitive tunneling-a hyperfocus on virtual content that compromises situational awareness (SA) in safety-critical scenarios. This paper investigates SA in AR-guided cardiopulmonary resuscitation (CPR), where responders must balance effective compressions with vigilance to unpredictable hazards (e.g., patient vomiting). We developed an AR app on a Magic Leap 2 that overlays real-time CPR feedback (compression depth and rate) and conducted a user study with simulated unexpected incidents (e.g., bleeding) to evaluate SA, in which SA metrics were collected via observation and questionnaires administered during freeze-probe events. Eye tracking analysis revealed that higher SA levels were associated with greater saccadic amplitude and velocity, and with reduced proportion and frequency of fixations on virtual content. To predict SA, we propose FixGraphPool, a graph neural network that structures gaze events (fixations, saccades) into spatiotemporal graphs, effectively capturing dynamic attentional patterns. Our model achieved 83.0% accuracy (F1=81.0%), outperforming feature-based machine learning and state-of-the-art time-series models by leveraging domain knowledge and spatial-temporal information encoded in ET data. These findings demonstrate the potential of eye tracking for SA modeling in AR and highlight its utility in designing AR systems that ensure user safety and situational awareness.




With the development of generative artificial intelligence (GenAI) tools to create art, stakeholders cannot come to an agreement on the value of these works. In this study we uncovered the mixed opinions surrounding art made by AI. We developed two versions of a dance performance augmented by technology either with or without GenAI. For each version we informed audiences of the performance's development either before or after a survey on their perceptions of the performance. There were thirty-nine participants (13 males, 26 female) divided between the four performances. Results demonstrated that individuals were more inclined to attribute artistic merit to works made by GenAI when they were unaware of its use. We present this case study as a call to address the importance of utilizing the social context and the users' interpretations of GenAI in shaping a technical explanation, leading to a greater discussion that can bridge gaps in understanding.
Recent advances in large vision-language models have led to impressive performance in visual question answering and multimodal reasoning. However, it remains unclear whether these models genuinely perform grounded visual reasoning or rely on superficial patterns and dataset biases. In this work, we introduce MagiC, a comprehensive benchmark designed to evaluate grounded multimodal cognition, assessing not only answer accuracy but also the quality of step-by-step reasoning and its alignment with relevant visual evidence. Our benchmark includes approximately 5,500 weakly supervised QA examples generated from strong model outputs and 900 human-curated examples with fine-grained annotations, including answers, rationales, and bounding box groundings. We evaluate 15 vision-language models ranging from 7B to 70B parameters across four dimensions: final answer correctness, reasoning validity, grounding fidelity, and self-correction ability. MagiC further includes diagnostic settings to probe model robustness under adversarial visual cues and assess their capacity for introspective error correction. We introduce new metrics such as MagiScore and StepSense, and provide comprehensive analyses that reveal key limitations and opportunities in current approaches to grounded visual reasoning.