Abstract:Meme-based social abuse detection is challenging because harmful intent often relies on implicit cultural symbolism and subtle cross-modal incongruence. Prior approaches, from fusion-based methods to in-context learning with Large Vision-Language Models (LVLMs), have made progress but remain limited by three factors: i) cultural blindness (missing symbolic context), ii) boundary ambiguity (satire vs. abuse confusion), and iii) lack of interpretability (opaque model reasoning). We introduce CROSS-ALIGN+, a three-stage framework that systematically addresses these limitations: (1) Stage I mitigates cultural blindness by enriching multimodal representations with structured knowledge from ConceptNet, Wikidata, and Hatebase; (2) Stage II reduces boundary ambiguity through parameter-efficient LoRA adapters that sharpen decision boundaries; and (3) Stage III enhances interpretability by generating cascaded explanations. Extensive experiments on five benchmarks and eight LVLMs demonstrate that CROSS-ALIGN+ consistently outperforms state-of-the-art methods, achieving up to 17% relative F1 improvement while providing interpretable justifications for each decision.
Abstract:Clinical Question-Answering (CQA) industry systems are increasingly rely on Large Language Models (LLMs), yet their deployment is often guided by the assumption that domain-specific fine-tuning is essential. Although specialised medical LLMs such as BioBERT, BioGPT, and PubMedBERT remain popular, they face practical limitations including narrow coverage, high retraining costs, and limited adaptability. Efforts based on Supervised Fine-Tuning (SFT) have attempted to address these assumptions but continue to reinforce what we term the SPECIALISATION FALLACY-the belief that specialised medical LLMs are inherently superior for CQA. To address this assumption, we introduce MEDASSESS-X, a deployment-industry-oriented CQA framework that applies alignment at inference time rather than through SFT. MEDASSESS-X uses lightweight steering vectors to guide model activations toward medically consistent reasoning without updating model weights or requiring domain-specific retraining. This inference-time alignment layer stabilises CQA performance across both general-purpose and specialised medical LLMs, thereby resolving the SPECIALISATION FALLACY. Empirically, MEDASSESS-X delivers consistent gains across all LLM families, improving Accuracy by up to +6%, Factual Consistency by +7%, and reducing Safety Error Rate by as much as 50%.
Abstract:Automated Audio Captioning (AAC) generates captions for audio clips but faces challenges due to limited datasets compared to image captioning. To overcome this, we propose the zero-shot AAC system that leverages pre-trained models, eliminating the need for extensive training. Our approach uses a pre-trained audio CLIP model to extract auditory features and generate a structured prompt, which guides a Large Language Model (LLM) in caption generation. Unlike traditional greedy decoding, our method refines token selection through the audio CLIP model, ensuring alignment with the audio content. Experimental results demonstrate a 35% improvement in NLG mean score (from 4.7 to 7.3) using MAGIC search with the WavCaps model. The performance is heavily influenced by the audio-text matching model and keyword selection, with optimal results achieved using a single keyword prompt, and a 50% performance drop when no keyword list is used.