Abstract:AI co-writing systems challenge long held ideals about agency and ownership in the creative process, thereby hindering widespread adoption. In order to address this, we investigate conceptions of agency and ownership in AI creative co-writing. Drawing on insights from a review of commercial systems, we developed three co-writing systems with identical functionality but distinct interface metaphors: agentic, tool-like, and magical. Through interviews with professional and non-professional writers (n = 18), we explored how these metaphors influenced participants' sense of control and authorship. Our analysis resulted in a taxonomy of agency and ownership subtypes and underscore how tool-like metaphors shift writers' expected points of control while agentic metaphors foreground conceptual contributions. We argue that interface metaphors not only guide expectations of control but also frame conceptions of authorship. We conclude with recommendations for the design of AI co-writing systems, emphasizing how metaphor shapes user experience and creative practice.
Abstract:Haptic feedback enhances collision avoidance by providing directional obstacle information to operators in unmanned aerial vehicle (UAV) teleoperation. However, such feedback is often rendered via haptic joysticks, which are unfamiliar to UAV operators and limited to single-directional force feedback. Additionally, the direct coupling of the input device and the feedback method diminishes the operators' control authority and causes oscillatory movements. To overcome these limitations, we propose AeroHaptix, a wearable haptic feedback system that uses high-resolution vibrations to communicate multiple obstacle directions simultaneously. The vibrotactile actuators' layout was optimized based on a perceptual study to eliminate perceptual biases and achieve uniform spatial coverage. A novel rendering algorithm, MultiCBF, was adapted from control barrier functions to support multi-directional feedback. System evaluation showed that AeroHaptix effectively reduced collisions in complex environment, and operators reported significantly lower physical workload, improved situational awareness, and increased control authority.