Autoregressive Transformers rely on Key-Value (KV) caching to accelerate inference. However, the linear growth of the KV cache with context length leads to excessive memory consumption and bandwidth constraints. This bottleneck is particularly problematic in real-time applications -- such as chatbots and interactive assistants -- where low latency and high memory efficiency are critical. Existing methods drop distant tokens or compress states in a lossy manner, sacrificing accuracy by discarding vital context or introducing bias. We propose MorphKV, an inference-time technique that maintains a constant-sized KV cache while preserving accuracy. MorphKV balances long-range dependencies and local coherence during text generation. It eliminates early-token bias while retaining high-fidelity context by adaptively ranking tokens through correlation-aware selection. Unlike heuristic retention or lossy compression, MorphKV iteratively refines the KV cache via lightweight updates guided by attention patterns of recent tokens. This approach captures inter-token correlation with greater accuracy, crucial for tasks like content creation and code generation. Our studies on long-response tasks show 52.9$\%$ memory savings and 18.2$\%$ higher accuracy on average compared to state-of-the-art prior works, enabling efficient real-world deployment.
Mental health issues are worsening in today's competitive society, such as depression and anxiety. Traditional healings like counseling and chatbots fail to engage effectively, they often provide generic responses lacking emotional depth. Although large language models (LLMs) have the potential to create more human-like interactions, they still struggle to capture subtle emotions. This requires LLMs to be equipped with human-like adaptability and warmth. To fill this gap, we propose the MIND (Multi-agent INner Dialogue), a novel paradigm that provides more immersive psychological healing environments. Considering the strong generative and role-playing ability of LLM agents, we predefine an interactive healing framework and assign LLM agents different roles within the framework to engage in interactive inner dialogues with users, thereby providing an immersive healing experience. We conduct extensive human experiments in various real-world healing dimensions, and find that MIND provides a more user-friendly experience than traditional paradigms. This demonstrates that MIND effectively leverages the significant potential of LLMs in psychological healing.
Understanding land use over time is critical to tracking events related to climate change, like deforestation. However, satellite-based remote sensing tools which are used for monitoring struggle to differentiate vegetation types in farms and orchards from forests. We observe that metrics such as the Normalized Difference Vegetation Index (NDVI), based on plant photosynthesis, have unique temporal signatures that reflect agricultural practices and seasonal cycles. We analyze yearly NDVI changes on 20 farms for 10 unique crops. Initial results show that NDVI curves are coherent with agricultural practices, are unique to each crop, consistent globally, and can differentiate farms from forests. We develop a novel longitudinal NDVI dataset for the state of California from 2020-2023 with 500~m resolution and over 70 million points. We use this to develop the TerraTrace platform, an end-to-end analytic tool that classifies land use using NDVI signatures and allows users to query the system through an LLM chatbot and graphical interface.
We use a duoethnographic approach to study how wearable-integrated LLM chatbots can assist with personalized stress management, addressing the growing need for immediacy and tailored interventions. Two researchers interacted with custom chatbots over 22 days, responding to wearable-detected physiological prompts, recording stressor phrases, and using them to seek tailored interventions from their LLM-powered chatbots. They recorded their experiences in autoethnographic diaries and analyzed them during weekly discussions, focusing on the relevance, clarity, and impact of chatbot-generated interventions. Results showed that even though most events triggered by the wearable were meaningful, only one in five warranted an intervention. It also showed that interventions tailored with brief event descriptions were more effective than generic ones. By examining the intersection of wearables and LLM, this research contributes to developing more effective, user-centric mental health tools for real-time stress relief and behavior change.
Access to legal knowledge in India is often hindered by a lack of awareness, misinformation and limited accessibility to judicial resources. Many individuals struggle to navigate complex legal frameworks, leading to the frequent misuse of laws and inadequate legal protection. To address these issues, we propose a Retrieval-Augmented Generation (RAG)-based legal chatbot powered by vectorstore oriented FAISS for efficient and accurate legal information retrieval. Unlike traditional chatbots, our model is trained using an extensive dataset comprising legal books, official documentation and the Indian Constitution, ensuring accurate responses to even the most complex or misleading legal queries. The chatbot leverages FAISS for rapid vector-based search, significantly improving retrieval speed and accuracy. It is also prompt-engineered to handle twisted or ambiguous legal questions, reducing the chances of incorrect interpretations. Apart from its core functionality of answering legal queries, the platform includes additional features such as real-time legal news updates, legal blogs, and access to law-related books, making it a comprehensive resource for users. By integrating advanced AI techniques with an optimized retrieval system, our chatbot aims to democratize legal knowledge, enhance legal literacy, and prevent the spread of misinformation. The study demonstrates that our approach effectively improves legal accessibility while maintaining high accuracy and efficiency, thereby contributing to a more informed and empowered society.
Large Language Models (LLMs) are revolutionizing information retrieval, with chatbots becoming an important source for answering user queries. As by their design, LLMs prioritize generating correct answers, the value of highly plausible yet incorrect answers (candidate answers) tends to be overlooked. However, such answers can still prove useful, for example, they can play a crucial role in tasks like Multiple-Choice Question Answering (MCQA) and QA Robustness Assessment (QARA). Existing QA datasets primarily focus on correct answers without explicit consideration of the plausibility of other candidate answers, limiting opportunity for more nuanced evaluations of models. To address this gap, we introduce PlausibleQA, a large-scale dataset comprising 10,000 questions and 100,000 candidate answers, each annotated with plausibility scores and justifications for their selection. Additionally, the dataset includes 900,000 justifications for pairwise comparisons between candidate answers, further refining plausibility assessments. We evaluate PlausibleQA through human assessments and empirical experiments, demonstrating its utility in MCQA and QARA analysis. Our findings show that plausibility-aware approaches are effective for MCQA distractor generation and QARA. We release PlausibleQA as a resource for advancing QA research and enhancing LLM performance in distinguishing plausible distractors from correct answers.
Teaching literature under interdisciplinary contexts (e.g., science, art) that connect reading materials has become popular in elementary schools. However, constructing such contexts is challenging as it requires teachers to explore substantial amounts of interdisciplinary content and link it to the reading materials. In this paper, we develop LitLinker via an iterative design process involving 13 teachers to facilitate the ideation of interdisciplinary contexts for teaching literature. Powered by a large language model (LLM), LitLinker can recommend interdisciplinary topics and contextualize them with the literary elements (e.g., paragraphs, viewpoints) in the reading materials. A within-subjects study (N=16) shows that compared to an LLM chatbot, LitLinker can improve the integration depth of different subjects and reduce workload in this ideation task. Expert interviews (N=9) also demonstrate LitLinker's usefulness for supporting the ideation of interdisciplinary contexts for teaching literature. We conclude with concerns and design considerations for supporting interdisciplinary teaching with LLMs.
The Adobe Experience Platform AI Assistant is a conversational tool that enables organizations to interact seamlessly with proprietary enterprise data through a chatbot. However, due to access restrictions, Large Language Models (LLMs) cannot retrieve these internal documents, limiting their ability to generate accurate zero-shot responses. To overcome this limitation, we use a Retrieval-Augmented Generation (RAG) framework powered by a Knowledge Graph (KG) to retrieve relevant information from external knowledge sources, enabling LLMs to answer questions over private or previously unseen document collections. In this paper, we propose a novel approach for building a high-quality, low-noise KG. We apply several techniques, including incremental entity resolution using seed concepts, similarity-based filtering to deduplicate entries, assigning confidence scores to entity-relation pairs to filter for high-confidence pairs, and linking facts to source documents for provenance. Our KG-RAG system retrieves relevant tuples, which are added to the user prompts context before being sent to the LLM generating the response. Our evaluation demonstrates that this approach significantly enhances response relevance, reducing irrelevant answers by over 50% and increasing fully relevant answers by 88% compared to the existing production system.
This study quantitively examines which features of AI-generated text lead humans to perceive subjective consciousness in large language model (LLM)-based AI systems. Drawing on 99 passages from conversations with Claude 3 Opus and focusing on eight features -- metacognitive self-reflection, logical reasoning, empathy, emotionality, knowledge, fluency, unexpectedness, and subjective expressiveness -- we conducted a survey with 123 participants. Using regression and clustering analyses, we investigated how these features influence participants' perceptions of AI consciousness. The results reveal that metacognitive self-reflection and the AI's expression of its own emotions significantly increased perceived consciousness, while a heavy emphasis on knowledge reduced it. Participants clustered into seven subgroups, each showing distinct feature-weighting patterns. Additionally, higher prior knowledge of LLMs and more frequent usage of LLM-based chatbots were associated with greater overall likelihood assessments of AI consciousness. This study underscores the multidimensional and individualized nature of perceived AI consciousness and provides a foundation for better understanding the psychosocial implications of human-AI interaction.
As AI chatbots become ubiquitous, voice interaction presents a compelling way to enable rapid, high-bandwidth communication for both semantic and social signals. This has driven research into Large Audio Models (LAMs) to power voice-native experiences. However, aligning LAM development with user goals requires a clear understanding of user needs and preferences to establish reliable progress metrics. This study addresses these challenges by introducing an interactive approach to evaluate LAMs and collecting 7,500 LAM interactions from 484 participants. Through topic modeling of user queries, we identify primary use cases for audio interfaces. We then analyze user preference rankings and qualitative feedback to determine which models best align with user needs. Finally, we evaluate how static benchmarks predict interactive performance - our analysis reveals no individual benchmark strongly correlates with interactive results ($\tau \leq 0.33$ for all benchmarks). While combining multiple coarse-grained features yields modest predictive power ($R^2$=$0.30$), only two out of twenty datasets on spoken question answering and age prediction show significantly positive correlations. This suggests a clear need to develop LAM evaluations that better correlate with user preferences.