Abstract:The conversational capabilities of Large Language Models (LLMs) suggest that they may be able to perform as automated talk therapists. It is crucial to know if these systems would be effective and adhere to known standards. We present a counsellor chatbot that focuses on motivating tobacco smokers to quit smoking. It uses a state-of-the-art LLM and a widely applied therapeutic approach called Motivational Interviewing (MI), and was evolved in collaboration with clinician-scientists with expertise in MI. We also describe and validate an automated assessment of both the chatbot's adherence to MI and client responses. The chatbot was tested on 106 participants, and their confidence that they could succeed in quitting smoking was measured before the conversation and one week later. Participants' confidence increased by an average of 1.7 on a 0-10 scale. The automated assessment of the chatbot showed adherence to MI standards in 98% of utterances, higher than human counsellors. The chatbot scored well on a participant-reported metric of perceived empathy but lower than typical human counsellors. Furthermore, participants' language indicated a good level of motivation to change, a key goal in MI. These results suggest that the automation of talk therapy with a modern LLM has promise.
Abstract:Accurate transcription of proper names and technical terms is particularly important in speech-to-text applications for business conversations. These words, which are essential to understanding the conversation, are often rare and therefore likely to be under-represented in text and audio training data, creating a significant challenge in this domain. We present a two-step keyword boosting mechanism that successfully works on normalized unigrams and n-grams rather than just single tokens, which eliminates missing hits issues with boosting raw targets. In addition, we show how adjusting the boosting weight logic avoids over-boosting multi-token keywords. This improves our keyword recognition rate by 26% relative on our proprietary in-domain dataset and 2% on LibriSpeech. This method is particularly useful on targets that involve non-alphabetic characters or have non-standard pronunciations.