Abstract:The rise of Large Language Models (LLM) has increased the need for scalable, high-performance inference systems, yet most existing frameworks assume homogeneous, resource-rich hardware, often unrealistic in academic, or resource-constrained settings. We introduce AIvailable, a low-cost, highly available LLM-as-a-Service (LLMaaS) platform, that uses a software-defined approach for running LLMs across heterogeneous and legacy GPU nodes, including NVIDIA and AMD devices, with a focus on fully utilizing each node's VRAM. AIvailable operates as a fully GPU-accelerated inference without CPU fallbacks, featuring a unified client interface that allows seamless interaction with all deployed LLMs through a single logical unit. The architecture comprises four main components: the Client Interface for user access, the Service Frontend for secure request routing and load balancing, the SDAI Controller for orchestration, deployment, and monitoring, and the Service Backend of heterogeneous GPU nodes executing workloads. By abstracting GPU-specific details and providing dynamic, VRAM-aware allocation and reallocation of models, AIvailable ensures efficient use of resources and resilience against failures or workload fluctuations. Targeting academic labs, private companies, and other constrained organizations, it supports diverse open LLMs helping democratize generative AI through the repurposing of legacy GPUs.
Abstract:This paper presents Project Riley, a novel multimodal and multi-model conversational AI architecture oriented towards the simulation of reasoning influenced by emotional states. Drawing inspiration from Pixar's Inside Out, the system comprises five distinct emotional agents - Joy, Sadness, Fear, Anger, and Disgust - that engage in structured multi-round dialogues to generate, criticise, and iteratively refine responses. A final reasoning mechanism synthesises the contributions of these agents into a coherent output that either reflects the dominant emotion or integrates multiple perspectives. The architecture incorporates both textual and visual large language models (LLMs), alongside advanced reasoning and self-refinement processes. A functional prototype was deployed locally in an offline environment, optimised for emotional expressiveness and computational efficiency. From this initial prototype, another one emerged, called Armando, which was developed for use in emergency contexts, delivering emotionally calibrated and factually accurate information through the integration of Retrieval-Augmented Generation (RAG) and cumulative context tracking. The Project Riley prototype was evaluated through user testing, in which participants interacted with the chatbot and completed a structured questionnaire assessing three dimensions: Emotional Appropriateness, Clarity and Utility, and Naturalness and Human-likeness. The results indicate strong performance in structured scenarios, particularly with respect to emotional alignment and communicative clarity.
Abstract:In natural phenomena, data distributions often deviate from normality. One can think of cataclysms as a self-explanatory example: events that occur almost never, and at the same time are many standard deviations away from the common outcome. In many scientific contexts it is exactly these tail events that researchers are most interested in anticipating, so that adequate measures can be taken to prevent or attenuate a major impact on society. Despite such efforts, we have yet to provide definite answers to crucial issues in evaluating predictive solutions in domains such as weather, pollution, health. In this paper, we deal with two encapsulated problems simultaneously. First, assessing the performance of regression models when non-uniform preferences apply - not all values are equally relevant concerning the accuracy of their prediction, and there's a particular interest in the most extreme values. Second, assessing the robustness of models when dealing with uncertainty regarding the actual underlying distribution of values relevant for such problems. We show how different levels of relevance associated with target values may impact experimental conclusions, and demonstrate the practical utility of the proposed methods.