Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
This research presents an innovative approach to cancer diagnosis and prediction using explainable Artificial Intelligence (XAI) and deep learning techniques. With cancer causing nearly 10 million deaths globally in 2020, early and accurate diagnosis is crucial. Traditional methods often face challenges in cost, accuracy, and efficiency. Our study develops an AI model that provides precise outcomes and clear insights into its decision-making process, addressing the "black box" problem of deep learning models. By employing XAI techniques, we enhance interpretability and transparency, building trust among healthcare professionals and patients. Our approach leverages neural networks to analyse extensive datasets, identifying patterns for cancer detection. This model has the potential to revolutionise diagnosis by improving accuracy, accessibility, and clarity in medical decision-making, possibly leading to earlier detection and more personalised treatment strategies. Furthermore, it could democratise access to high-quality diagnostics, particularly in resource-limited settings, contributing to global health equity. The model's applications extend beyond cancer diagnosis, potentially transforming various aspects of medical decision-making and saving millions of lives worldwide.



Oral cancer constitutes a significant global health concern, resulting in 277,484 fatalities in 2023, with the highest prevalence observed in low- and middle-income nations. Facilitating automation in the detection of possibly malignant and malignant lesions in the oral cavity could result in cost-effective and early disease diagnosis. Establishing an extensive repository of meticulously annotated oral lesions is essential. In this research photos are being collected from global clinical experts, who have been equipped with an annotation tool to generate comprehensive labelling. This research presents a novel approach for integrating bounding box annotations from various doctors. Additionally, Deep Belief Network combined with CAPSNET is employed to develop automated systems that extracted intricate patterns to address this challenging problem. This study evaluated two deep learning-based computer vision methodologies for the automated detection and classification of oral lesions to facilitate the early detection of oral cancer: image classification utilizing CAPSNET. Image classification attained an F1 score of 94.23% for detecting photos with lesions 93.46% for identifying images necessitating referral. Object detection attained an F1 score of 89.34% for identifying lesions for referral. Subsequent performances are documented about classification based on the sort of referral decision. Our preliminary findings indicate that deep learning possesses the capability to address this complex problem.




Identifying the extent of brain tumors is a significant challenge in brain cancer treatment. The main difficulty is in the approximate detection of tumor size. Magnetic resonance imaging (MRI) has become a critical diagnostic tool. However, manually detecting the boundaries of brain tumors from MRI scans is a labor-intensive task that requires extensive expertise. Deep learning and computer-aided detection techniques have led to notable advances in machine learning for this purpose. In this paper, we propose a modified You Only Look Once (YOLOv8) model to accurately detect the tumors within the MRI images. The proposed model replaced the Non-Maximum Suppression (NMS) algorithm with a Real-Time Detection Transformer (RT- DETR) in the detection head. NMS filters out redundant or overlapping bounding boxes in the detected tumors, but they are hand-designed and pre-set. RT-DETR removes hand-designed components. The second improvement was made by replacing the normal convolution block with ghost convolution. Ghost Convolution reduces computational and memory costs while maintaining high accuracy and enabling faster inference, making it ideal for resource-constrained environments and real-time applications. The third improvement was made by introducing a vision transformer block in the backbone of YOLOv8 to extract context-aware features. We used a publicly available dataset of brain tumors in the proposed model. The proposed model performed better than the original YOLOv8 model and also performed better than other object detectors (Faster R- CNN, Mask R-CNN, YOLO, YOLOv3, YOLOv4, YOLOv5, SSD, RetinaNet, EfficientDet, and DETR). The proposed model achieved 0.91 mAP (mean Average Precision)@0.5.




Cancer evolves continuously over time through a complex interplay of genetic, epigenetic, microenvironmental, and phenotypic changes. This dynamic behavior drives uncontrolled cell growth, metastasis, immune evasion, and therapy resistance, posing challenges for effective monitoring and treatment. However, today's data-driven research in oncology has primarily focused on cross-sectional analysis using data from a single modality, limiting the ability to fully characterize and interpret the disease's dynamic heterogeneity. Advances in multiscale data collection and computational methods now enable the discovery of longitudinal multimodal biomarkers for precision oncology. Longitudinal data reveal patterns of disease progression and treatment response that are not evident from single-timepoint data, enabling timely abnormality detection and dynamic treatment adaptation. Multimodal data integration offers complementary information from diverse sources for more precise risk assessment and targeting of cancer therapy. In this review, we survey methods of longitudinal and multimodal modeling, highlighting their synergy in providing multifaceted insights for personalized care tailored to the unique characteristics of a patient's cancer. We summarize the current challenges and future directions of longitudinal multimodal analysis in advancing precision oncology.




Quantitative tools are increasingly appealing for decision support in healthcare, driven by the growing capabilities of advanced AI systems. However, understanding the predictive uncertainties surrounding a tool's output is crucial for decision-makers to ensure reliable and transparent decisions. In this paper, we present a case study on pulmonary nodule detection for lung cancer screening, enhancing an advanced detection model with an uncertainty quantification technique called conformal risk control (CRC). We demonstrate that prediction sets with conformal guarantees are attractive measures of predictive uncertainty in the safety-critical healthcare domain, allowing end-users to achieve arbitrary validity by trading off false positives and providing formal statistical guarantees on model performance. Among ground-truth nodules annotated by at least three radiologists, our model achieves a sensitivity that is competitive with that generally achieved by individual radiologists, with a slight increase in false positives. Furthermore, we illustrate the risks of using off-the-shelve prediction models when faced with ontological uncertainty, such as when radiologists disagree on what constitutes the ground truth on pulmonary nodules.




Problem: Pancreas radiological imaging is challenging due to the small size, blurred boundaries, and variability of shape and position of the organ among patients. Goal: In this work we present MiniGPT-Pancreas, a Multimodal Large Language Model (MLLM), as an interactive chatbot to support clinicians in pancreas cancer diagnosis by integrating visual and textual information. Methods: MiniGPT-v2, a general-purpose MLLM, was fine-tuned in a cascaded way for pancreas detection, tumor classification, and tumor detection with multimodal prompts combining questions and computed tomography scans from the National Institute of Health (NIH), and Medical Segmentation Decathlon (MSD) datasets. The AbdomenCT-1k dataset was used to detect the liver, spleen, kidney, and pancreas. Results: MiniGPT-Pancreas achieved an Intersection over Union (IoU) of 0.595 and 0.550 for the detection of pancreas on NIH and MSD datasets, respectively. For the pancreas cancer classification task on the MSD dataset, accuracy, precision, and recall were 0.876, 0.874, and 0.878, respectively. When evaluating MiniGPT-Pancreas on the AbdomenCT-1k dataset for multi-organ detection, the IoU was 0.8399 for the liver, 0.722 for the kidney, 0.705 for the spleen, and 0.497 for the pancreas. For the pancreas tumor detection task, the IoU score was 0.168 on the MSD dataset. Conclusions: MiniGPT-Pancreas represents a promising solution to support clinicians in the classification of pancreas images with pancreas tumors. Future research is needed to improve the score on the detection task, especially for pancreas tumors.




Colorectal cancer (CRC) is one of the most commonly diagnosed cancers all over the world. It starts as a polyp in the inner lining of the colon. To prevent CRC, early polyp detection is required. Colonosopy is used for the inspection of the colon. Generally, the images taken by the camera placed at the tip of the endoscope are analyzed by the experts manually. Various traditional machine learning models have been used with the rise of machine learning. Recently, deep learning models have shown more effectiveness in polyp detection due to their superiority in generalizing and learning small features. These deep learning models for object detection can be segregated into two different types: single-stage and two-stage. Generally, two stage models have higher accuracy than single stage ones but the single stage models have low inference time. Hence, single stage models are easy to use for quick object detection. YOLO is one of the singlestage models used successfully for polyp detection. It has drawn the attention of researchers because of its lower inference time. The researchers have used Different versions of YOLO so far, and with each newer version, the accuracy of the model is increasing. This paper aims to see the effectiveness of the recently released YOLOv11 to detect polyp. We analyzed the performance for all five models of YOLOv11 (YOLO11n, YOLO11s, YOLO11m, YOLO11l, YOLO11x) with Kvasir dataset for the training and testing. Two different versions of the dataset were used. The first consisted of the original dataset, and the other was created using augmentation techniques. The performance of all the models with these two versions of the dataset have been analysed.
Pathological diagnosis is vital for determining disease characteristics, guiding treatment, and assessing prognosis, relying heavily on detailed, multi-scale analysis of high-resolution whole slide images (WSI). However, traditional pure vision models face challenges of redundant feature extraction, whereas existing large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy. To overcome these issues, we propose two innovative strategies: the mixed task-guided feature enhancement, which directs feature extraction toward lesion-related details across scales, and the prompt-guided detail feature completion, which integrates coarse- and fine-grained features from WSI based on specific prompts without compromising inference speed. Leveraging a comprehensive dataset of 490,000 samples from diverse pathology tasks-including cancer detection, grading, vascular and neural invasion identification, and so on-we trained the pathology-specialized LVLM, OmniPath. Extensive experiments demonstrate that this model significantly outperforms existing methods in diagnostic accuracy and efficiency, offering an interactive, clinically aligned approach for auxiliary diagnosis in a wide range of pathology applications.
Deep learning has enabled the development of highly robust foundation models for various pathological tasks across diverse diseases and patient cohorts. Among these models, vision-language pre-training, which leverages large-scale paired data to align pathology image and text embedding spaces, and provides a novel zero-shot paradigm for downstream tasks. However, existing models have been primarily data-driven and lack the incorporation of domain-specific knowledge, which limits their performance in cancer diagnosis, especially for rare tumor subtypes. To address this limitation, we establish a Knowledge-enhanced Pathology (KEEP) foundation model that harnesses disease knowledge to facilitate vision-language pre-training. Specifically, we first construct a disease knowledge graph (KG) that covers 11,454 human diseases with 139,143 disease attributes, including synonyms, definitions, and hypernym relations. We then systematically reorganize the millions of publicly available noisy pathology image-text pairs, into 143K well-structured semantic groups linked through the hierarchical relations of the disease KG. To derive more nuanced image and text representations, we propose a novel knowledge-enhanced vision-language pre-training approach that integrates disease knowledge into the alignment within hierarchical semantic groups instead of unstructured image-text pairs. Validated on 18 diverse benchmarks with more than 14,000 whole slide images (WSIs), KEEP achieves state-of-the-art performance in zero-shot cancer diagnostic tasks. Notably, for cancer detection, KEEP demonstrates an average sensitivity of 89.8% at a specificity of 95.0% across 7 cancer types. For cancer subtyping, KEEP achieves a median balanced accuracy of 0.456 in subtyping 30 rare brain cancers, indicating strong generalizability for diagnosing rare tumors.
Lung cancer is a major issue in worldwide public health, requiring early diagnosis using stable techniques. This work begins a thorough investigation of the use of machine learning (ML) methods for precise classification of lung cancer stages. A cautious analysis is performed to overcome overfitting issues in model performance, taking into account minimum child weight and learning rate. A set of machine learning (ML) models including XGBoost (XGB), LGBM, Adaboost, Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), CatBoost, and k-Nearest Neighbor (k-NN) are run methodically and contrasted. Furthermore, the correlation between features and targets is examined using the deep neural network (DNN) model and thus their capability in detecting complex patternsis established. It is argued that several ML models can be capable of classifying lung cancer stages with great accuracy. In spite of the complexity of DNN architectures, traditional ML models like XGBoost, LGBM, and Logistic Regression excel with superior performance. The models perform better than the others in lung cancer prediction on the complete set of comparative metrics like accuracy, precision, recall, and F-1 score