Abstract:Oceanographic forecasting impacts various sectors of society by supporting environmental conservation and economic activities. Based on global circulation models, traditional forecasting methods are computationally expensive and slow, limiting their ability to provide rapid forecasts. Recent advances in deep learning offer faster and more accurate predictions, although these data-driven models are often trained with global data from numerical simulations, which may not reflect reality. The emergence of such models presents great potential for improving ocean prediction at a subregional domain. However, their ability to predict fine-scale ocean processes, like mesoscale structures, remains largely unknown. This work aims to adapt a graph neural network initially developed for global weather forecasting to improve subregional ocean prediction, specifically focusing on the Canary Current upwelling system. The model is trained with satellite data and compared to state-of-the-art physical ocean models to assess its performance in capturing ocean dynamics. Our results show that the deep learning model surpasses traditional methods in precision despite some challenges in upwelling areas. It demonstrated superior performance in reducing RMSE errors compared to ConvLSTM and the GLORYS reanalysis, particularly in regions with complex oceanic dynamics such as Cape Ghir, Cape Bojador, and Cape Blanc. The model achieved improvements of up to 26.5% relative to ConvLSTM and error reductions of up to 76% in 5-day forecasts compared to the GLORYS reanalysis at these critical locations, highlighting its enhanced capability to capture spatial variability and improve predictive accuracy in complex areas. These findings suggest the viability of adapting meteorological data-driven models for improving subregional medium-term ocean forecasting.
Abstract:Neural networks have become the standard technique for medical diagnostics, especially in cancer detection and classification. This work evaluates the performance of Vision Transformers architectures, including Swin Transformer and MaxViT, in several datasets of magnetic resonance imaging (MRI) and computed tomography (CT) scans. We used three training sets of images with brain, lung, and kidney tumors. Each dataset includes different classification labels, from brain gliomas and meningiomas to benign and malignant lung conditions and kidney anomalies such as cysts and cancers. This work aims to analyze the behavior of the neural networks in each dataset and the benefits of combining different image modalities and tumor classes. We designed several experiments by fine-tuning the models on combined and individual image modalities. The results revealed that the Swin Transformer provided high accuracy, achieving up to 99.9\% for kidney tumor classification and 99.3\% accuracy in a combined dataset. MaxViT also provided excellent results in individual datasets but performed poorly when data is combined. This research highlights the adaptability of Transformer-based models to various image modalities and features. However, challenges persist, including limited annotated data and interpretability issues. Future works will expand this study by incorporating other image modalities and enhancing diagnostic capabilities. Integrating these models across diverse datasets could mark a pivotal advance in precision medicine, paving the way for more efficient and comprehensive healthcare solutions.