Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Multimodal sarcasm understanding is a high-order cognitive task. Although large language models (LLMs) have shown impressive performance on many downstream NLP tasks, growing evidence suggests that they struggle with sarcasm understanding. In this paper, we propose Commander-GPT, a modular decision routing framework inspired by military command theory. Rather than relying on a single LLM's capability, Commander-GPT orchestrates a team of specialized LLM agents where each agent will be selectively assigned to a focused sub-task such as context modeling, sentiment analysis, etc. Their outputs are then routed back to the commander, which integrates the information and performs the final sarcasm judgment. To coordinate these agents, we introduce three types of centralized commanders: (1) a trained lightweight encoder-based commander (e.g., multi-modal BERT); (2) four small autoregressive language models, serving as moderately capable commanders (e.g., DeepSeek-VL); (3) two large LLM-based commander (Gemini Pro and GPT-4o) that performs task routing, output aggregation, and sarcasm decision-making in a zero-shot fashion. We evaluate Commander-GPT on the MMSD and MMSD 2.0 benchmarks, comparing five prompting strategies. Experimental results show that our framework achieves 4.4% and 11.7% improvement in F1 score over state-of-the-art (SoTA) baselines on average, demonstrating its effectiveness.
Recurrent neural networks (RNNs), particularly LSTMs, are effective for time-series tasks like sentiment analysis and short-term stock prediction. However, their computational complexity poses challenges for real-time deployment in resource constrained environments. While FPGAs offer a promising platform for energy-efficient AI acceleration, existing tools mainly target feed-forward networks, and LSTM acceleration typically requires full custom implementation. In this paper, we address this gap by leveraging the open-source and extensible FINN framework to enable the generalized deployment of LSTMs on FPGAs. Specifically, we leverage the Scan operator from the Open Neural Network Exchange (ONNX) specification to model the recurrent nature of LSTM computations, enabling support for mixed quantisation within them and functional verification of LSTM-based models. Furthermore, we introduce custom transformations within the FINN compiler to map the quantised ONNX computation graph to hardware blocks from the HLS kernel library of the FINN compiler and Vitis HLS. We validate the proposed tool-flow by training a quantised ConvLSTM model for a mid-price stock prediction task using the widely used dataset and generating a corresponding hardware IP of the model using our flow, targeting the XCZU7EV device. We show that the generated quantised ConvLSTM accelerator through our flow achieves a balance between performance (latency) and resource consumption, while matching (or bettering) inference accuracy of state-of-the-art models with reduced precision. We believe that the generalisable nature of the proposed flow will pave the way for resource-efficient RNN accelerator designs on FPGAs.
Sociotechnical systems, such as language technologies, frequently exhibit identity-based biases. These biases exacerbate the experiences of historically marginalized communities and remain understudied in low-resource contexts. While models and datasets specific to a language or with multilingual support are commonly recommended to address these biases, this paper empirically tests the effectiveness of such approaches in the context of gender, religion, and nationality-based identities in Bengali, a widely spoken but low-resourced language. We conducted an algorithmic audit of sentiment analysis models built on mBERT and BanglaBERT, which were fine-tuned using all Bengali sentiment analysis (BSA) datasets from Google Dataset Search. Our analyses showed that BSA models exhibit biases across different identity categories despite having similar semantic content and structure. We also examined the inconsistencies and uncertainties arising from combining pre-trained models and datasets created by individuals from diverse demographic backgrounds. We connected these findings to the broader discussions on epistemic injustice, AI alignment, and methodological decisions in algorithmic audits.
The increasing sophistication of large language models (LLMs) has sparked growing concerns regarding their potential role in exacerbating ideological polarization through the automated generation of persuasive and biased content. This study explores the extent to which fine-tuned LLMs can replicate and amplify polarizing discourse within online environments. Using a curated dataset of politically charged discussions extracted from Reddit, we fine-tune an open-source LLM to produce context-aware and ideologically aligned responses. The model's outputs are evaluated through linguistic analysis, sentiment scoring, and human annotation, with particular attention to credibility and rhetorical alignment with the original discourse. The results indicate that, when trained on partisan data, LLMs are capable of producing highly plausible and provocative comments, often indistinguishable from those written by humans. These findings raise significant ethical questions about the use of AI in political discourse, disinformation, and manipulation campaigns. The paper concludes with a discussion of the broader implications for AI governance, platform regulation, and the development of detection tools to mitigate adversarial fine-tuning risks.
Research on understanding emotions in written language continues to expand, especially for understudied languages with distinctive regional expressions and cultural features, such as Bangla. This study examines emotion analysis using 22,698 social media comments from the EmoNoBa dataset. For language analysis, we employ machine learning models: Linear SVM, KNN, and Random Forest with n-gram data from a TF-IDF vectorizer. We additionally investigated how PCA affects the reduction of dimensionality. Moreover, we utilized a BiLSTM model and AdaBoost to improve decision trees. To make our machine learning models easier to understand, we used LIME to explain the predictions of the AdaBoost classifier, which uses decision trees. With the goal of advancing sentiment analysis in languages with limited resources, our work examines various techniques to find efficient techniques for emotion identification in Bangla.
In this paper, we address the task of targeted sentiment analysis (TSA), which involves two sub-tasks, i.e., identifying specific aspects from reviews and determining their corresponding sentiments. Aspect extraction forms the foundation for sentiment prediction, highlighting the critical dependency between these two tasks for effective cross-task knowledge transfer. While most existing studies adopt a multi-task learning paradigm to align task-specific features in the latent space, they predominantly rely on coarse-grained knowledge transfer. Such approaches lack fine-grained control over aspect-sentiment relationships, often assuming uniform sentiment polarity within related aspects. This oversimplification neglects contextual cues that differentiate sentiments, leading to negative transfer. To overcome these limitations, we propose FCKT, a fine-grained cross-task knowledge transfer framework tailored for TSA. By explicitly incorporating aspect-level information into sentiment prediction, FCKT achieves fine-grained knowledge transfer, effectively mitigating negative transfer and enhancing task performance. Experiments on three datasets, including comparisons with various baselines and large language models (LLMs), demonstrate the effectiveness of FCKT. The source code is available on https://github.com/cwei01/FCKT.
We study the Logistic Contextual Slate Bandit problem, where, at each round, an agent selects a slate of $N$ items from an exponentially large set (of size $2^{\Omega(N)}$) of candidate slates provided by the environment. A single binary reward, determined by a logistic model, is observed for the chosen slate. Our objective is to develop algorithms that maximize cumulative reward over $T$ rounds while maintaining low per-round computational costs. We propose two algorithms, Slate-GLM-OFU and Slate-GLM-TS, that accomplish this goal. These algorithms achieve $N^{O(1)}$ per-round time complexity via local planning (independent slot selections), and low regret through global learning (joint parameter estimation). We provide theoretical and empirical evidence supporting these claims. Under a well-studied diversity assumption, we prove that Slate-GLM-OFU incurs only $\tilde{O}(\sqrt{T})$ regret. Extensive experiments across a wide range of synthetic settings demonstrate that our algorithms consistently outperform state-of-the-art baselines, achieving both the lowest regret and the fastest runtime. Furthermore, we apply our algorithm to select in-context examples in prompts of Language Models for solving binary classification tasks such as sentiment analysis. Our approach achieves competitive test accuracy, making it a viable alternative in practical scenarios.




Large language models and vision-language models (which we jointly call LMs) have transformed NLP and CV, demonstrating remarkable potential across various fields. However, their capabilities in affective analysis (i.e. sentiment analysis and emotion detection) remain underexplored. This gap is largely due to the absence of comprehensive evaluation benchmarks, and the inherent complexity of affective analysis tasks. In this paper, we introduce MMAFFBen, the first extensive open-source benchmark for multilingual multimodal affective analysis. MMAFFBen encompasses text, image, and video modalities across 35 languages, covering four key affective analysis tasks: sentiment polarity, sentiment intensity, emotion classification, and emotion intensity. Moreover, we construct the MMAFFIn dataset for fine-tuning LMs on affective analysis tasks, and further develop MMAFFLM-3b and MMAFFLM-7b based on it. We evaluate various representative LMs, including GPT-4o-mini, providing a systematic comparison of their affective understanding capabilities. This project is available at https://github.com/lzw108/MMAFFBen.
Several machine learning algorithms have been developed for the prediction of Alzheimer's disease and related dementia (ADRD) from spontaneous speech. However, none of these algorithms have been translated for the prediction of broader cognitive impairment (CI), which in some cases is a precursor and risk factor of ADRD. In this paper, we evaluated several speech-based open-source methods originally proposed for the prediction of ADRD, as well as methods from multimodal sentiment analysis for the task of predicting CI from patient audio recordings. Results demonstrated that multimodal methods outperformed unimodal ones for CI prediction, and that acoustics-based approaches performed better than linguistics-based ones. Specifically, interpretable acoustic features relating to affect and prosody were found to significantly outperform BERT-based linguistic features and interpretable linguistic features, respectively. All the code developed for this study is available at https://github.com/JTColonel/catch.
Aspect-Based Sentiment Analysis (ABSA) is a fundamental task in natural language processing, offering fine-grained insights into opinions expressed in text. While existing research has largely focused on resource-rich languages like English which leveraging large annotated datasets, pre-trained models, and language-specific tools. These resources are often unavailable for low-resource languages such as Bengali. The ABSA task in Bengali remains poorly explored and is further complicated by its unique linguistic characteristics and a lack of annotated data, pre-trained models, and optimized hyperparameters. To address these challenges, this research propose CrosGrpsABS, a novel hybrid framework that leverages bidirectional cross-attention between syntactic and semantic graphs to enhance aspect-level sentiment classification. The CrosGrpsABS combines transformerbased contextual embeddings with graph convolutional networks, built upon rule-based syntactic dependency parsing and semantic similarity computations. By employing bidirectional crossattention, the model effectively fuses local syntactic structure with global semantic context, resulting in improved sentiment classification performance across both low- and high-resource settings. We evaluate CrosGrpsABS on four low-resource Bengali ABSA datasets and the high-resource English SemEval 2014 Task 4 dataset. The CrosGrpsABS consistently outperforms existing approaches, achieving notable improvements, including a 0.93% F1-score increase for the Restaurant domain and a 1.06% gain for the Laptop domain in the SemEval 2014 Task 4 benchmark.