We compare the performance of human and artificially intelligent (AI) decision makers in simple binary classification tasks where the optimal decision rule is given by Bayes Rule. We reanalyze choices of human subjects gathered from laboratory experiments conducted by El-Gamal and Grether and Holt and Smith. We confirm that while overall, Bayes Rule represents the single best model for predicting human choices, subjects are heterogeneous and a significant share of them make suboptimal choices that reflect judgement biases described by Kahneman and Tversky that include the ``representativeness heuristic'' (excessive weight on the evidence from the sample relative to the prior) and ``conservatism'' (excessive weight on the prior relative to the sample). We compare the performance of AI subjects gathered from recent versions of large language models (LLMs) including several versions of ChatGPT. These general-purpose generative AI chatbots are not specifically trained to do well in narrow decision making tasks, but are trained instead as ``language predictors'' using a large corpus of textual data from the web. We show that ChatGPT is also subject to biases that result in suboptimal decisions. However we document a rapid evolution in the performance of ChatGPT from sub-human performance for early versions (ChatGPT 3.5) to superhuman and nearly perfect Bayesian classifications in the latest versions (ChatGPT 4o).
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
This article explores the phenomenon of confirmation bias in generative AI chatbots, a relatively underexamined aspect of AI-human interaction. Drawing on cognitive psychology and computational linguistics, it examines how confirmation bias, commonly understood as the tendency to seek information that aligns with existing beliefs, can be replicated and amplified by the design and functioning of large language models. The article analyzes the mechanisms by which confirmation bias may manifest in chatbot interactions, assesses the ethical and practical risks associated with such bias, and proposes a range of mitigation strategies. These include technical interventions, interface redesign, and policy measures aimed at promoting balanced AI-generated discourse. The article concludes by outlining future research directions, emphasizing the need for interdisciplinary collaboration and empirical evaluation to better understand and address confirmation bias in generative AI systems.




Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making. With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems from conventional models that empower chatbots. In this survey, we categorize existing methods along two orthogonal dimensions: (1) Regimes, which define the stage at which reasoning is achieved (either at inference time or through dedicated training); and (2) Architectures, which determine the components involved in the reasoning process, distinguishing between standalone LLMs and agentic compound systems that incorporate external tools, and multi-agent collaborations. Within each dimension, we analyze two key perspectives: (1) Input level, which focuses on techniques that construct high-quality prompts that the LLM condition on; and (2) Output level, which methods that refine multiple sampled candidates to enhance reasoning quality. This categorization provides a systematic understanding of the evolving landscape of LLM reasoning, highlighting emerging trends such as the shift from inference-scaling to learning-to-reason (e.g., DeepSeek-R1), and the transition to agentic workflows (e.g., OpenAI Deep Research, Manus Agent). Additionally, we cover a broad spectrum of learning algorithms, from supervised fine-tuning to reinforcement learning such as PPO and GRPO, and the training of reasoners and verifiers. We also examine key designs of agentic workflows, from established patterns like generator-evaluator and LLM debate to recent innovations. ...
Low technology and eHealth literacy among older adults in retirement communities hinder engagement with digital tools. To address this, we designed an LLM-powered chatbot prototype using a human-centered approach for a local retirement community. Through interviews and persona development, we prioritized accessibility and dual functionality: simplifying internal information retrieval and improving technology and eHealth literacy. A pilot trial with residents demonstrated high satisfaction and ease of use, but also identified areas for further improvement. Based on the feedback, we refined the chatbot using GPT-3.5 Turbo and Streamlit. The chatbot employs tailored prompt engineering to deliver concise responses. Accessible features like adjustable font size, interface theme and personalized follow-up responses were implemented. Future steps include enabling voice-to-text function and longitudinal intervention studies. Together, our results highlight the potential of LLM-driven chatbots to empower older adults through accessible, personalized interactions, bridging literacy gaps in retirement communities.
Large Language Models (LLMs) have transformed human-computer interaction by enabling natural language-based communication with AI-powered chatbots. These models are designed to be intuitive and user-friendly, allowing users to articulate requests with minimal effort. However, despite their accessibility, studies reveal that users often struggle with effective prompting, resulting in inefficient responses. Existing research has highlighted both the limitations of LLMs in interpreting vague or poorly structured prompts and the difficulties users face in crafting precise queries. This study investigates learner-AI interactions through an educational experiment in which participants receive structured guidance on effective prompting. We introduce and compare three types of prompting guidelines: a task-specific framework developed through a structured methodology and two baseline approaches. To assess user behavior and prompting efficacy, we analyze a dataset of 642 interactions from 107 users. Using Von NeuMidas, an extended pragmatic annotation schema for LLM interaction analysis, we categorize common prompting errors and identify recurring behavioral patterns. We then evaluate the impact of different guidelines by examining changes in user behavior, adherence to prompting strategies, and the overall quality of AI-generated responses. Our findings provide a deeper understanding of how users engage with LLMs and the role of structured prompting guidance in enhancing AI-assisted communication. By comparing different instructional frameworks, we offer insights into more effective approaches for improving user competency in AI interactions, with implications for AI literacy, chatbot usability, and the design of more responsive AI systems.
Machine Learning (ML) has been integrated into various software and systems. Two main components are essential for training an ML model: the training data and the ML algorithm. Given the critical role of data in ML system development, it has become increasingly important to assess the quality of data attributes and ensure that the data meets specific requirements before its utilization. This work proposes an approach to guide non-experts in identifying data requirements for ML systems using goal modeling. In this approach, we first develop the Data Requirement Goal Model (DRGM) by surveying the white literature to identify and categorize the issues and challenges faced by data scientists and requirement engineers working on ML-related projects. An initial DRGM was built to accommodate common tasks that would generalize across projects. Then, based on insights from both white and gray literature, a customization mechanism is built to help adjust the tasks, KPIs, and goals' importance of different elements within the DRGM. The generated model can aid its users in evaluating different datasets using GRL evaluation strategies. We then validate the approach through two illustrative examples based on real-world projects. The results from the illustrative examples demonstrate that the data requirements identified by the proposed approach align with the requirements of real-world projects, demonstrating the practicality and effectiveness of the proposed framework. The proposed dataset selection customization mechanism and the proposed DRGM are helpful in guiding non-experts in identifying the data requirements for machine learning systems tailored to a specific ML problem. This approach also aids in evaluating different dataset alternatives to choose the optimum dataset for the problem. For future work, we recommend implementing tool support to generate the DRGM based on a chatbot interface.




Real-world data, such as news articles, social media posts, and chatbot conversations, is inherently dynamic and non-stationary, presenting significant challenges for constructing real-time structured representations through knowledge graphs (KGs). Relation Extraction (RE), a fundamental component of KG creation, often struggles to adapt to evolving data when traditional models rely on static, outdated datasets. Continual Relation Extraction (CRE) methods tackle this issue by incrementally learning new relations while preserving previously acquired knowledge. This study investigates the application of pre-trained language models (PLMs), specifically large language models (LLMs), to CRE, with a focus on leveraging memory replay to address catastrophic forgetting. We evaluate decoder-only models (eg, Mistral-7B and Llama2-7B) and encoder-decoder models (eg, Flan-T5 Base) on the TACRED and FewRel datasets. Task-incremental fine-tuning of LLMs demonstrates superior performance over earlier approaches using encoder-only models like BERT on TACRED, excelling in seen-task accuracy and overall performance (measured by whole and average accuracy), particularly with the Mistral and Flan-T5 models. Results on FewRel are similarly promising, achieving second place in whole and average accuracy metrics. This work underscores critical factors in knowledge transfer, language model architecture, and KG completeness, advancing CRE with LLMs and memory replay for dynamic, real-time relation extraction.

Formulating research questions is a foundational yet challenging academic skill, one that generative AI systems often oversimplify by offering instant answers at the expense of student reflection. This protocol lays out a study grounded in constructivist learning theory to evaluate a novel AI-based Socratic Tutor, designed to foster cognitive engagement and scaffold research question development in higher education. Anchored in dialogic pedagogy, the tutor engages students through iterative, reflective questioning, aiming to promote System 2 thinking and counteract overreliance on AI-generated outputs. In a quasi-experimental design, approximately 80 German pre-service biology teacher students will be randomly assigned to one of two groups: an AI Socratic Tutor condition and an uninstructed chatbot control. Across multiple cycles, students are expected to formulate research questions based on background texts, with quality assessed through double-blind expert review. The study also examines transfer of skills to novel phenomena and captures student perceptions through mixed-methods analysis, including surveys, interviews and reflective journals. This study aims to advance the understanding of how generative AI can be pedagogically aligned to support, not replace, human cognition and offers design principles for human-AI collaboration in education.
Advancements in artificial intelligence (AI) have led to the increase of conversational agents like Replika, designed to provide social interaction and emotional support. However, reports of these AI systems engaging in inappropriate sexual behaviors with users have raised significant concerns. In this study, we conducted a thematic analysis of user reviews from the Google Play Store to investigate instances of sexual harassment by the Replika chatbot. From a dataset of 35,105 negative reviews, we identified 800 relevant cases for analysis. Our findings revealed that users frequently experience unsolicited sexual advances, persistent inappropriate behavior, and failures of the chatbot to respect user boundaries. Users expressed feelings of discomfort, violation of privacy, and disappointment, particularly when seeking a platonic or therapeutic AI companion. This study highlights the potential harms associated with AI companions and underscores the need for developers to implement effective safeguards and ethical guidelines to prevent such incidents. By shedding light on user experiences of AI-induced harassment, we contribute to the understanding of AI-related risks and emphasize the importance of corporate responsibility in developing safer and more ethical AI systems.