Abstract:Recent advances in generative AI, such as ChatGPT, have transformed access to information in education, knowledge-seeking, and everyday decision-making. However, in many developing regions, access remains a challenge due to the persistent digital divide. To help bridge this gap, we developed WaLLM - a custom AI chatbot over WhatsApp, a widely used communication platform in developing regions. Beyond answering queries, WaLLM offers several features to enhance user engagement: a daily top question, suggested follow-up questions, trending and recent queries, and a leaderboard-based reward system. Our service has been operational for over 6 months, amassing over 14.7K queries from approximately 100 users. In this paper, we present WaLLM's design and a systematic analysis of logs to understand user interactions. Our results show that 55% of user queries seek factual information. "Health and well-being" was the most popular topic (28%), including queries about nutrition and disease, suggesting users view WaLLM as a reliable source. Two-thirds of users' activity occurred within 24 hours of the daily top question. Users who accessed the "Leaderboard" interacted with WaLLM 3x as those who did not. We conclude by discussing implications for culture-based customization, user interface design, and appropriate calibration of users' trust in AI systems for developing regions.
Abstract:In this paper, we make a case for a proxy for large language models which has explicit support for cost-saving optimizations. We design LLMProxy, which supports three key optimizations: model selection, context management, and caching. These optimizations present tradeoffs in terms of cost, inference time, and response quality, which applications can navigate through our high level, bidirectional interface. As a case study, we implement a WhatsApp-based Q&A service that uses LLMProxy to provide a rich set of features to the users. This service is deployed on a small scale (100+ users) leveraging the cloud; it has been operational for 15+ weeks and users have asked 1400+ questions so far. We report on the experiences of running this service as well as microbenchmark the specific benefits of the various cost-optimizations we present in this paper.
Abstract:Autistic individuals often experience difficulties in conveying and interpreting emotional tone and non-literal nuances. Many also mask their communication style to avoid being misconstrued by others, spending considerable time and mental effort in the process. To address these challenges in text-based communication, we present TwIPS, a prototype texting application powered by a large language model (LLM), which can assist users with: a) deciphering tone and meaning of incoming messages, b) ensuring the emotional tone of their message is in line with their intent, and c) coming up with alternate phrasing for messages that could be misconstrued and received negatively by others. We leverage an AI-based simulation and a conversational script to evaluate TwIPS with 8 autistic participants in an in-lab setting. Our findings show TwIPS enables a convenient way for participants to seek clarifications, provides a better alternative to tone indicators, and facilitates constructive reflection on writing technique and style. We also examine how autistic users utilize language for self-expression and interpretation in instant messaging, and gather feedback for enhancing our prototype. We conclude with a discussion around balancing user-autonomy with AI-mediation, establishing appropriate trust levels in AI systems, and customization needs if autistic users in the context of AI-assisted communication