Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Missing-modality information on e-commerce platforms, such as absent product images or textual descriptions, often arises from annotation errors or incomplete metadata, impairing both product presentation and downstream applications such as recommendation systems. Motivated by the multimodal generative capabilities of recent Multimodal Large Language Models (MLLMs), this work investigates a fundamental yet underexplored question: can MLLMs generate missing modalities for products in e-commerce scenarios? We propose the Missing Modality Product Completion Benchmark (MMPCBench), which consists of two sub-benchmarks: a Content Quality Completion Benchmark and a Recommendation Benchmark. We further evaluate six state-of-the-art MLLMs from the Qwen2.5-VL and Gemma-3 model families across nine real-world e-commerce categories, focusing on image-to-text and text-to-image completion tasks. Experimental results show that while MLLMs can capture high-level semantics, they struggle with fine-grained word-level and pixel- or patch-level alignment. In addition, performance varies substantially across product categories and model scales, and we observe no trivial correlation between model size and performance, in contrast to trends commonly reported in mainstream benchmarks. We also explore Group Relative Policy Optimization (GRPO) to better align MLLMs with this task. GRPO improves image-to-text completion but does not yield gains for text-to-image completion. Overall, these findings expose the limitations of current MLLMs in real-world cross-modal generation and represent an early step toward more effective missing-modality product completion.
Traditional e-commerce recommender systems primarily optimize for user engagement and purchase likelihood, often neglecting the rigid physiological constraints required for human health. Standard collaborative filtering algorithms are structurally blind to these hard limits, frequently suggesting bundles that fail to meet specific total daily energy expenditure and macronutrient balance requirements. To address this disconnect, this paper introduces a Physics-Informed Neuro-Symbolic Recommender System that integrates nutritional science directly into the recommendation pipeline via a dual-layer architecture. The framework begins by constructing a semantic knowledge graph using sentence-level encoders to strictly align commercial products with authoritative nutritional data. During the training phase, an implicit physics regularizer applies a differentiable thermodynamic loss function, ensuring that learned latent embeddings reflect nutritional plausibility rather than simple popularity. Subsequently, during the inference phase, an explicit physics optimizer employs simulated annealing and elastic quantity optimization to generate discrete grocery bundles that strictly adhere to the user's protein and caloric targets.
There are challenges that must be overcome to make recommender systems useful in healthcare settings. The reasons are varied: the lack of publicly available clinical data, the difficulty that users may have in understanding the reasons why a recommendation was made, the risks that may be involved in following that recommendation, and the uncertainty about its effectiveness. In this work, we address these challenges with a recommendation model that leverages the structure of psychometric data to provide visual explanations that are faithful to the model and interpretable by care professionals. We focus on a narrow healthcare niche, gerontological primary care, to show that the proposed recommendation model can assist the attending professional in the creation of personalised care plans. We report results of a comparative offline performance evaluation of the proposed model on healthcare datasets that were collected by research partners in Brazil, as well as the results of a user study that evaluates the interpretability of the visual explanations the model generates. The results suggest that the proposed model can advance the application of recommender systems in this healthcare niche, which is expected to grow in demand , opportunities, and information technology needs as demographic changes become more pronounced.
Sequential recommendation models are widely used in applications, yet they face stringent latency requirements. Mainstream models leverage the Transformer attention mechanism to improve performance, but its computational complexity grows with the sequence length, leading to a latency challenge for long sequences. Consequently, KV cache technology has recently been explored in sequential recommendation systems to reduce inference latency. However, KV cache introduces substantial storage overhead in sequential recommendation systems, which often have a large user base with potentially very long user history sequences. In this work, we observe that KV sequences across different users exhibit significant similarities, indicating the existence of collaborative signals in KV. Furthermore, we analyze the KV using singular value decomposition (SVD) and find that the information in KV can be divided into two parts: the majority of the information is shareable across users, while a small portion is user-specific. Motivated by this, we propose CollectiveKV, a cross-user KV sharing mechanism. It captures the information shared across users through a learnable global KV pool. During inference, each user retrieves high-dimensional shared KV from the pool and concatenates them with low-dimensional user-specific KV to obtain the final KV. Experiments on five sequential recommendation models and three datasets show that our method can compress the KV cache to only 0.8% of its original size, while maintaining or even enhancing model performance.
User behavior sequences in modern recommendation systems exhibit significant length heterogeneity, ranging from sparse short-term interactions to rich long-term histories. While longer sequences provide more context, we observe that increasing the maximum input sequence length in existing CTR models paradoxically degrades performance for short-sequence users due to attention polarization and length imbalance in training data. To address this, we propose LAIN(Length-Adaptive Interest Network), a plug-and-play framework that explicitly incorporates sequence length as a conditioning signal to balance long- and short-sequence modeling. LAIN consists of three lightweight components: a Spectral Length Encoder that maps length into continuous representations, Length-Conditioned Prompting that injects global contextual cues into both long- and short-term behavior branches, and Length-Modulated Attention that adaptively adjusts attention sharpness based on sequence length. Extensive experiments on three real-world benchmarks across five strong CTR backbones show that LAIN consistently improves overall performance, achieving up to 1.15% AUC gain and 2.25% log loss reduction. Notably, our method significantly improves accuracy for short-sequence users without sacrificing longsequence effectiveness. Our work offers a general, efficient, and deployable solution to mitigate length-induced bias in sequential recommendation.
Accurate, reproducible burn assessment is critical for treatment planning, healing monitoring, and medico-legal documentation, yet conventional visual inspection and 2D photography are subjective and limited for longitudinal comparison. This paper presents an AI-enabled burn assessment and management platform that integrates multi-view photogrammetry, 3D surface reconstruction, and deep learning-based segmentation within a structured clinical workflow. Using standard multi-angle images from consumer-grade cameras, the system reconstructs patient-specific 3D burn surfaces and maps burn regions onto anatomy to compute objective metrics in real-world units, including surface area, TBSA, depth-related geometric proxies, and volumetric change. Successive reconstructions are spatially aligned to quantify healing progression over time, enabling objective tracking of wound contraction and depth reduction. The platform also supports structured patient intake, guided image capture, 3D analysis and visualization, treatment recommendations, and automated report generation. Simulation-based evaluation demonstrates stable reconstructions, consistent metric computation, and clinically plausible longitudinal trends, supporting a scalable, non-invasive approach to objective, geometry-aware burn assessment and decision support in acute and outpatient care.
Although generative recommenders demonstrate improved performance with longer sequences, their real-time deployment is hindered by substantial computational costs. To address this challenge, we propose a simple yet effective method for compressing long-term user histories by leveraging inherent item categorical features, thereby preserving user interests while enhancing efficiency. Experiments on two large-scale datasets demonstrate that, compared to the influential HSTU model, our approach achieves up to a 6x reduction in computational cost and up to 39% higher accuracy at comparable cost (i.e., similar sequence length).
Interactive recommender systems can dynamically adapt to user feedback, but often suffer from content homogeneity and filter bubble effects due to overfitting short-term user preferences. While recent efforts aim to improve content diversity, they predominantly operate in static or one-shot settings, neglecting the long-term evolution of user interests. Reinforcement learning provides a principled framework for optimizing long-term user satisfaction by modeling sequential decision-making processes. However, its application in recommendation is hindered by sparse, long-tailed user-item interactions and limited semantic planning capabilities. In this work, we propose LLM-Enhanced Reinforcement Learning (LERL), a novel hierarchical recommendation framework that integrates the semantic planning power of LLM with the fine-grained adaptability of RL. LERL consists of a high-level LLM-based planner that selects semantically diverse content categories, and a low-level RL policy that recommends personalized items within the selected semantic space. This hierarchical design narrows the action space, enhances planning efficiency, and mitigates overexposure to redundant content. Extensive experiments on real-world datasets demonstrate that LERL significantly improves long-term user satisfaction when compared with state-of-the-art baselines. The implementation of LERL is available at https://anonymous.4open.science/r/code3-18D3/.
Health influencers play a growing role in shaping public beliefs, yet their content is often conveyed through conversational narratives and rhetorical strategies rather than explicit factual claims. As a result, claim-centric verification methods struggle to capture the pragmatic meaning of influencer discourse. In this paper, we propose TAIGR (Takeaway Argumentation Inference with Grounded References), a structured framework designed to analyze influencer discourse, which operates in three stages: (1) identifying the core influencer recommendation--takeaway; (2) constructing an argumentation graph that captures influencer justification for the takeaway; (3) performing factor graph-based probabilistic inference to validate the takeaway. We evaluate TAIGR on a content validation task over influencer video transcripts on health, showing that accurate validation requires modeling the discourse's pragmatic and argumentative structure rather than treating transcripts as flat collections of claims.
Large language models have recently shown promise for multimodal recommendation, particularly with text and image inputs. Yet real-world recommendation signals extend far beyond these modalities. To reflect this, we formalize recommendation features into four modalities: text, images, categorical features, and numerical attributes, and highlight the unique challenges this heterogeneity poses for LLMs in understanding multimodal information. In particular, these challenges arise not only across modalities but also within them, as attributes such as price, rating, and time may all be numeric yet carry distinct semantic meanings. Beyond this intra-modality ambiguity, another major challenge is the nested structure of recommendation signals, where user histories are sequences of items, each associated with multiple attributes. To address these challenges, we propose UniRec, a unified multimodal encoder for LLM-based recommendation. UniRec first employs modality-specific encoders to produce consistent embeddings across heterogeneous signals. It then adopts a triplet representation, comprising attribute name, type, and value, to separate schema from raw inputs and preserve semantic distinctions. Finally, a hierarchical Q-Former models the nested structure of user interactions while maintaining their layered organization. Across multiple real-world benchmarks, UniRec outperforms state-of-the-art multimodal and LLM-based recommenders by up to 15%, and extensive ablation studies further validate the contributions of each component.