Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
We present BanditLP, a scalable multi-stakeholder contextual bandit framework that unifies neural Thompson Sampling for learning objective-specific outcomes with a large-scale linear program for constrained action selection at serving time. The methodology is application-agnostic, compatible with arbitrary neural architectures, and deployable at web scale, with an LP solver capable of handling billions of variables. Experiments on public benchmarks and synthetic data show consistent gains over strong baselines. We apply this approach in LinkedIn's email marketing system and demonstrate business win, illustrating the value of integrated exploration and constrained optimization in production.
Imbalanced classification, where one class is observed far less frequently than the other, often causes standard training procedures to prioritize the majority class and perform poorly on rare but important cases. A classic and widely used remedy is to augment the minority class with synthetic examples, but two basic questions remain under-resolved: when does synthetic augmentation actually help, and how many synthetic samples should be generated? We develop a unified statistical framework for synthetic augmentation in imbalanced learning, studying models trained on imbalanced data augmented with synthetic minority samples and evaluated under the balanced population risk. Our theory shows that synthetic data is not always beneficial. In a ``local symmetry" regime, imbalance is not the dominant source of error near the balanced optimum, so adding synthetic samples cannot improve learning rates and can even degrade performance by amplifying generator mismatch. When augmentation can help (a ``local asymmetry" regime), the optimal synthetic size depends on generator accuracy and on whether the generator's residual mismatch is directionally aligned with the intrinsic majority-minority shift. This structure can make the best synthetic size deviate from naive full balancing, sometimes by a small refinement and sometimes substantially when generator bias is systematic. Practically, we recommend Validation-Tuned Synthetic Size (VTSS): select the synthetic size by minimizing balanced validation loss over a range centered near the fully balanced baseline, while allowing meaningful departures when the data indicate them. Simulations and a real sepsis prediction study support the theory and illustrate when synthetic augmentation helps, when it cannot, and how to tune its quantity effectively.
Contemporary sequential recommendation methods are becoming more complex, shifting from classification to a diffusion-guided generative paradigm. However, the quality of guidance in the form of user information is often compromised by missing data in the observed sequences, leading to suboptimal generation quality. Existing methods address this by removing locally similar items, but overlook ``critical turning points'' in user interest, which are crucial for accurately predicting subsequent user intent. To address this, we propose a novel Counterfactual Attention Regulation Diffusion model (CARD), which focuses on amplifying the signal from key interest-turning-point items while concurrently identifying and suppressing noise within the user sequence. CARD consists of (1) a Dual-side Thompson Sampling method to identify sequences undergoing significant interest shift, and (2) a counterfactual attention mechanism for these sequences to quantify the importance of each item. In this manner, CARD provides the diffusion model with a high-quality guidance signal composed of dynamically re-weighted interaction vectors to enable effective generation. Experiments show our method works well on real-world data without being computationally expensive. Our code is available at https://github.com/yanqilong3321/CARD.
Prompting is central to interaction with AI systems, yet many users struggle to explore alternative directions, articulate creative intent, or understand how variations in prompts shape model outputs. We introduce prompt recommender systems (PRS) as an interaction approach that supports exploration, suggesting contextually relevant follow-up prompts. We present PromptHelper, a PRS prototype integrated into an AI chatbot that surfaces semantically diverse prompt suggestions while users work on real writing tasks. We evaluate PromptHelper in a 2x2 fully within-subjects study (N=32) across creative and academic writing tasks. Results show that PromptHelper significantly increases users' perceived exploration and expressiveness without increasing cognitive workload. Qualitative findings illustrate how prompt recommendations help users branch into new directions, overcome uncertainty about what to ask next, and better articulate their intent. We discuss implications for designing AI interfaces that scaffold exploratory interaction while preserving user agency, and release open-source resources to support research on prompt recommendation.
Large language models (LLMs) process and predict sequences containing text to answer questions, and address tasks including document summarization, providing recommendations, writing software and solving quantitative problems. We provide a mathematical framework for LLMs by describing the encoding of text sequences into sequences of tokens, defining the architecture for next-token prediction models, explaining how these models are learned from data, and demonstrating how they are deployed to address a variety of tasks. The mathematical sophistication required to understand this material is not high, and relies on straightforward ideas from information theory, probability and optimization. Nonetheless, the combination of ideas resting on these different components from the mathematical sciences yields a complex algorithmic structure; and this algorithmic structure has demonstrated remarkable empirical successes. The mathematical framework established here provides a platform from which it is possible to formulate and address questions concerning the accuracy, efficiency and robustness of the algorithms that constitute LLMs. The framework also suggests directions for development of modified and new methodologies.
Popularity bias is a pervasive challenge in recommender systems, where a few popular items dominate attention while the majority of less popular items remain underexposed. This imbalance can reduce recommendation quality and lead to unfair item exposure. Although existing mitigation methods address this issue to some extent, they often lack transparency in how they operate. In this paper, we propose a post-hoc approach, PopSteer, that leverages a Sparse Autoencoder (SAE) to both interpret and mitigate popularity bias in recommendation models. The SAE is trained to replicate a trained model's behavior while enabling neuron-level interpretability. By introducing synthetic users with strong preferences for either popular or unpopular items, we identify neurons encoding popularity signals through their activation patterns. We then steer recommendations by adjusting the activations of the most biased neurons. Experiments on three public datasets with a sequential recommendation model demonstrate that PopSteer significantly enhances fairness with minimal impact on accuracy, while providing interpretable insights and fine-grained control over the fairness-accuracy trade-off.
User interactions on e-commerce platforms are inherently diverse, involving behaviors such as clicking, favoriting, adding to cart, and purchasing. The transitions between these behaviors offer valuable insights into user-item interactions, serving as a key signal for un- derstanding evolving preferences. Consequently, there is growing interest in leveraging multi-behavior data to better capture user intent. Recent studies have explored sequential modeling of multi- behavior data, many relying on transformer-based architectures with polynomial time complexity. While effective, these approaches often incur high computational costs, limiting their applicability in large-scale industrial systems with long user sequences. To address this challenge, we propose the Transition-Aware Graph Attention Network (TGA), a linear-complexity approach for modeling multi-behavior transitions. Unlike traditional trans- formers that treat all behavior pairs equally, TGA constructs a structured sparse graph by identifying informative transitions from three perspectives: (a) item-level transitions, (b) category-level transitions, and (c) neighbor-level transitions. Built upon the structured graph, TGA employs a transition-aware graph Attention mechanism that jointly models user-item interactions and behav- ior transition types, enabling more accurate capture of sequential patterns while maintaining computational efficiency. Experiments show that TGA outperforms all state-of-the-art models while sig- nificantly reducing computational cost. Notably, TGA has been deployed in a large-scale industrial production environment, where it leads to impressive improvements in key business metrics.
Learning Path Recommendation (LPR) aims to generate personalized sequences of learning items that maximize long-term learning effect while respecting pedagogical principles and operational constraints. Although large language models (LLMs) offer rich semantic understanding for free-form recommendation, applying them to long-horizon LPR is challenging due to (i) misalignment with pedagogical objectives such as the Zone of Proximal Development (ZPD) under sparse, delayed feedback, (ii) scarce and costly expert demonstrations, and (iii) multi-objective interactions among learning effect, difficulty scheduling, length controllability, and trajectory diversity. To address these issues, we propose IB-GRPO (Indicator-Based Group Relative Policy Optimization), an indicator-guided alignment approach for LLM-based LPR. To mitigate data scarcity, we construct hybrid expert demonstrations via Genetic Algorithm search and teacher RL agents and warm-start the LLM with supervised fine-tuning. Building on this warm-start, we design a within-session ZPD alignment score for difficulty scheduling. IB-GRPO then uses the $I_{ε+}$ dominance indicator to compute group-relative advantages over multiple objectives, avoiding manual scalarization and improving Pareto trade-offs. Experiments on ASSIST09 and Junyi using the KES simulator with a Qwen2.5-7B backbone show consistent improvements over representative RL and LLM baselines.
Graph-based social recommendation (SocialRec) has emerged as a powerful extension of graph collaborative filtering (GCF), which leverages graph neural networks (GNNs) to capture multi-hop collaborative signals from user-item interactions. These methods enrich user representations by incorporating social network information into GCF, thereby integrating additional collaborative signals from social relations. However, existing GCF and graph-based SocialRec approaches face significant challenges: they incur high computational costs and suffer from limited scalability due to the large number of parameters required to assign explicit embeddings to all users and items. In this work, we propose PULSE (Parameter-efficient User representation Learning with Social Knowledge), a framework that addresses this limitation by constructing user representations from socially meaningful signals without creating an explicit learnable embedding for each user. PULSE reduces the parameter size by up to 50% compared to the most lightweight GCF baseline. Beyond parameter efficiency, our method achieves state-of-the-art performance, outperforming 13 GCF and graph-based social recommendation baselines across varying levels of interaction sparsity, from cold-start to highly active users, through a time- and memory-efficient modeling process.
Machine learning and artificial intelligence conferences such as NeurIPS and ICML now regularly receive tens of thousands of submissions, posing significant challenges to maintaining the quality and consistency of the peer review process. This challenge is particularly acute for best paper awards, which are an important part of the peer review process, yet whose selection has increasingly become a subject of debate in recent years. In this paper, we introduce an author-assisted mechanism to facilitate the selection of best paper awards. Our method employs the Isotonic Mechanism for eliciting authors' assessments of their own submissions in the form of a ranking, which is subsequently utilized to adjust the raw review scores for optimal estimation of the submissions' ground-truth quality. We demonstrate that authors are incentivized to report truthfully when their utility is a convex additive function of the adjusted scores, and we validate this convexity assumption for best paper awards using publicly accessible review data of ICLR from 2019 to 2023 and NeurIPS from 2021 to 2023. Crucially, in the special case where an author has a single quota -- that is, may nominate only one paper -- we prove that truthfulness holds even when the utility function is merely nondecreasing and additive. This finding represents a substantial relaxation of the assumptions required in prior work. For practical implementation, we extend our mechanism to accommodate the common scenario of overlapping authorship. Finally, simulation results demonstrate that our mechanism significantly improves the quality of papers selected for awards.