Abstract:The majority of research in recommender systems, be it algorithmic improvements, context-awareness, explainability, or other areas, evaluates these systems on datasets that capture user interaction over a relatively limited time span. However, recommender systems can very well be used continuously for extended time. Similarly so, user behavior may evolve over that extended time. Although media studies and psychology offer a wealth of research on the evolution of user preferences and behavior as individuals age, there has been scant research in this regard within the realm of user modeling and recommender systems. In this study, we investigate the evolution of user preferences and behavior using the LFM-2b dataset, which, to our knowledge, is the only dataset that encompasses a sufficiently extensive time frame to permit real longitudinal studies and includes age information about its users. We identify specific usage and taste preferences directly related to the age of the user, i.e., while younger users tend to listen broadly to contemporary popular music, older users have more elaborate and personalized listening habits. The findings yield important insights that open new directions for research in recommender systems, providing guidance for future efforts.
Abstract:Psychological models are increasingly being used to explain online behavioral traces. Aside from the commonly used personality traits as a general user model, more domain dependent models are gaining attention. The use of domain dependent psychological models allows for more fine-grained identification of behaviors and provide a deeper understanding behind the occurrence of those behaviors. Understanding behaviors based on psychological models can provide an advantage over data-driven approaches. For example, relying on psychological models allow for ways to personalize when data is scarce. In this preliminary work we look at the relation between users' musical sophistication and their online music listening behaviors and to what extent we can successfully predict musical sophistication. An analysis of data from a study with 61 participants shows that listening behaviors can successfully be used to infer users' musical sophistication.