What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
May 30, 2025
Abstract:We present a universal high-fidelity neural audio compression algorithm that can compress speech, music, and general audio below 3 kbps bandwidth. Although current state-of-the-art audio codecs excel in audio compression, their effectiveness significantly declines when embedding space is sharply reduced, which corresponds to higher compression. To address this problem, we propose Residual Experts Vector Quantization (REVQ), which significantly expands the available embedding space and improves the performance while hardly sacrificing the bandwidth. Furthermore, we introduce a strategy to ensure that the vast embedding space can be fully utilized. Additionally, we propose a STFT-based discriminator to guide the generator in producing indistinguishable spectrograms. We demonstrate that the proposed approach outperforms baseline methods through detailed ablations.
* 5 pages,4 figures
Via

Mar 25, 2025
Abstract:Autoregressive (AR) models have demonstrated impressive capabilities in generating high-fidelity music. However, the conventional next-token prediction paradigm in AR models does not align with the human creative process in music composition, potentially compromising the musicality of generated samples. To overcome this limitation, we introduce MusiCoT, a novel chain-of-thought (CoT) prompting technique tailored for music generation. MusiCoT empowers the AR model to first outline an overall music structure before generating audio tokens, thereby enhancing the coherence and creativity of the resulting compositions. By leveraging the contrastive language-audio pretraining (CLAP) model, we establish a chain of "musical thoughts", making MusiCoT scalable and independent of human-labeled data, in contrast to conventional CoT methods. Moreover, MusiCoT allows for in-depth analysis of music structure, such as instrumental arrangements, and supports music referencing -- accepting variable-length audio inputs as optional style references. This innovative approach effectively addresses copying issues, positioning MusiCoT as a vital practical method for music prompting. Our experimental results indicate that MusiCoT consistently achieves superior performance across both objective and subjective metrics, producing music quality that rivals state-of-the-art generation models. Our samples are available at https://MusiCoT.github.io/.
* Preprint
Via

May 08, 2025
Abstract:Existing methods for generative modeling of discrete data, such as symbolic music tokens, face two primary challenges: (1) they either embed discrete inputs into continuous state-spaces or (2) rely on variational losses that only approximate the true negative log-likelihood. Previous efforts have individually targeted these limitations. While information-theoretic Gaussian diffusion models alleviate the suboptimality of variational losses, they still perform modeling in continuous domains. In this work, we introduce the Information-Theoretic Discrete Poisson Diffusion Model (ItDPDM), which simultaneously addresses both limitations by directly operating in a discrete state-space via a Poisson diffusion process inspired by photon arrival processes in camera sensors. We introduce a novel Poisson Reconstruction Loss (PRL) and derive an exact relationship between PRL and the true negative log-likelihood, thereby eliminating the need for approximate evidence lower bounds. Experiments conducted on the Lakh MIDI symbolic music dataset and the CIFAR-10 image benchmark demonstrate that ItDPDM delivers significant improvements, reducing test NLL by up to 80% compared to prior baselines, while also achieving faster convergence.
* Pre-print
Via

May 07, 2025
Abstract:Ornamentations, embellishments, or microtonal inflections are essential to melodic expression across many musical traditions, adding depth, nuance, and emotional impact to performances. Recognizing ornamentations in singing voices is key to MIR, with potential applications in music pedagogy, singer identification, genre classification, and controlled singing voice generation. However, the lack of annotated datasets and specialized modeling approaches remains a major obstacle for progress in this research area. In this work, we introduce R\=aga Ornamentation Detection (ROD), a novel dataset comprising Indian classical music recordings curated by expert musicians. The dataset is annotated using a custom Human-in-the-Loop tool for six vocal ornaments marked as event-based labels. Using this dataset, we develop an ornamentation detection model based on deep time-series analysis, preserving ornament boundaries during the chunking of long audio recordings. We conduct experiments using different train-test configurations within the ROD dataset and also evaluate our approach on a separate, manually annotated dataset of Indian classical concert recordings. Our experimental results support the superior performance of our proposed approach over the baseline CRNN.
Via

Apr 09, 2025
Abstract:Recent advances in generative models have made it possible to create high-quality, coherent music, with some systems delivering production-level output. Yet, most existing models focus solely on generating music from scratch, limiting their usefulness for musicians who want to integrate such models into a human, iterative composition workflow. In this paper we introduce STAGE, our STemmed Accompaniment GEneration model, fine-tuned from the state-of-the-art MusicGen to generate single-stem instrumental accompaniments conditioned on a given mixture. Inspired by instruction-tuning methods for language models, we extend the transformer's embedding matrix with a context token, enabling the model to attend to a musical context through prefix-based conditioning. Compared to the baselines, STAGE yields accompaniments that exhibit stronger coherence with the input mixture, higher audio quality, and closer alignment with textual prompts. Moreover, by conditioning on a metronome-like track, our framework naturally supports tempo-constrained generation, achieving state-of-the-art alignment with the target rhythmic structure--all without requiring any additional tempo-specific module. As a result, STAGE offers a practical, versatile tool for interactive music creation that can be readily adopted by musicians in real-world workflows.
Via

May 08, 2025
Abstract:Reactive dance generation (RDG) produces follower movements conditioned on guiding dancer and music while ensuring spatial coordination and temporal coherence. However, existing methods overemphasize global constraints and optimization, overlooking local information, such as fine-grained spatial interactions and localized temporal context. Therefore, we present ReactDance, a novel diffusion-based framework for high-fidelity RDG with long-term coherence and multi-scale controllability. Unlike existing methods that struggle with interaction fidelity, synchronization, and temporal consistency in duet synthesis, our approach introduces two key innovations: 1)Group Residual Finite Scalar Quantization (GRFSQ), a multi-scale disentangled motion representation that captures interaction semantics from coarse body rhythms to fine-grained joint dynamics, and 2)Blockwise Local Context (BLC), a sampling strategy eliminating error accumulation in long sequence generation via local block causal masking and periodic positional encoding. Built on the decoupled multi-scale GRFSQ representation, we implement a diffusion model withLayer-Decoupled Classifier-free Guidance (LDCFG), allowing granular control over motion semantics across scales. Extensive experiments on standard benchmarks demonstrate that ReactDance surpasses existing methods, achieving state-of-the-art performance.
Via

Mar 11, 2025
Abstract:We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
Via

May 29, 2025
Abstract:A restaurant dinner or a hotel stay may lead to memorable experiences when guests encounter unexpected aspects that also match their interests. For example, an origami-making station in the waiting area of a restaurant may be both surprising and enjoyable for a customer who is passionate about paper crafts. Similarly, an exhibit of 18th century harpsichords would be atypical for a hotel lobby and likely pique the interest of a guest who has a passion for Baroque music. Motivated by this insight, in this paper we introduce the new task of engineering serendipity through recommendations of items with atypical aspects. We describe an LLM-based system pipeline that extracts atypical aspects from item reviews, then estimates and aggregates their user-specific utility in a measure of serendipity potential that is used to rerank a list of items recommended to the user. To facilitate system development and evaluation, we introduce a dataset of Yelp reviews that are manually annotated with atypical aspects and a dataset of artificially generated user profiles, together with crowdsourced annotations of user-aspect utility values. Furthermore, we introduce a custom procedure for dynamic selection of in-context learning examples, which is shown to improve LLM-based judgments of atypicality and utility. Experimental evaluations show that serendipity-based rankings generated by the system are highly correlated with ground truth rankings for which serendipity scores are computed from manual annotations of atypical aspects and their user-dependent utility. Overall, we hope that the new recommendation task and the associated system presented in this paper catalyze further research into recommendation approaches that go beyond accuracy in their pursuit of enhanced user satisfaction. The datasets and the code are made publicly available at https://github.com/ramituncc49er/ATARS .
* 25 pages of content + references and appendix. arXiv admin note: text
overlap with arXiv:2311.02702
Via

Mar 24, 2025
Abstract:Generative AI is radically changing the creative arts, by fundamentally transforming the way we create and interact with cultural artefacts. While offering unprecedented opportunities for artistic expression and commercialisation, this technology also raises ethical, societal, and legal concerns. Key among these are the potential displacement of human creativity, copyright infringement stemming from vast training datasets, and the lack of transparency, explainability, and fairness mechanisms. As generative systems become pervasive in this domain, responsible design is crucial. Whilst previous work has tackled isolated aspects of generative systems (e.g., transparency, evaluation, data), we take a comprehensive approach, grounding these efforts within the Ethics Guidelines for Trustworthy Artificial Intelligence produced by the High-Level Expert Group on AI appointed by the European Commission - a framework for designing responsible AI systems across seven macro requirements. Focusing on generative music AI, we illustrate how these requirements can be contextualised for the field, addressing trustworthiness across multiple dimensions and integrating insights from the existing literature. We further propose a roadmap for operationalising these contextualised requirements, emphasising interdisciplinary collaboration and stakeholder engagement. Our work provides a foundation for designing and evaluating responsible music generation systems, calling for collaboration among AI experts, ethicists, legal scholars, and artists. This manuscript is accompanied by a website: https://amresearchlab.github.io/raim-framework/.
Via

Mar 31, 2025
Abstract:In recent years, Large Language Models (LLMs) have enabled users to provide highly specific music recommendation requests using natural language prompts (e.g. "Can you recommend some old classics for slow dancing?"). In this setup, the recommended tracks are predicted by the LLM in an autoregressive way, i.e. the LLM generates the track titles one token at a time. While intuitive, this approach has several limitation. First, it is based on a general purpose tokenization that is optimized for words rather than for track titles. Second, it necessitates an additional entity resolution layer that matches the track title to the actual track identifier. Third, the number of decoding steps scales linearly with the length of the track title, slowing down inference. In this paper, we propose to address the task of prompt-based music recommendation as a generative retrieval task. Within this setting, we introduce novel, effective, and efficient representations of track identifiers that significantly outperform commonly used strategies. We introduce Text2Tracks, a generative retrieval model that learns a mapping from a user's music recommendation prompt to the relevant track IDs directly. Through an offline evaluation on a dataset of playlists with language inputs, we find that (1) the strategy to create IDs for music tracks is the most important factor for the effectiveness of Text2Tracks and semantic IDs significantly outperform commonly used strategies that rely on song titles as identifiers (2) provided with the right choice of track identifiers, Text2Tracks outperforms sparse and dense retrieval solutions trained to retrieve tracks from language prompts.
Via
