Vulnerability detection is the process of identifying security vulnerabilities in software applications or systems.
Large language models (LLMs) have demonstrated impressive capabilities for many coding tasks, including summarization, translation, completion, and code generation. However, detecting code vulnerabilities remains a challenging task for LLMs. An effective way to improve LLM performance is in-context learning (ICL) - providing few-shot examples similar to the query, along with correct answers, can improve an LLM's ability to generate correct solutions. However, choosing the few-shot examples appropriately is crucial to improving model performance. In this paper, we explore two criteria for choosing few-shot examples for ICL used in the code vulnerability detection task. The first criterion considers if the LLM (consistently) makes a mistake or not on a sample with the intuition that LLM performance on a sample is informative about its usefulness as a few-shot example. The other criterion considers similarity of the examples with the program under query and chooses few-shot examples based on the $k$-nearest neighbors to the given sample. We perform evaluations to determine the benefits of these criteria individually as well as under various combinations, using open-source models on multiple datasets.
Deep neural networks (DNNs) have achieved remarkable success in computer vision tasks such as image classification, segmentation, and object detection. However, they are vulnerable to adversarial attacks, which can cause incorrect predictions with small perturbations in input images. Addressing this issue is crucial for deploying robust deep-learning systems. This paper presents a novel approach that utilizes contrastive learning for adversarial defense, a previously unexplored area. Our method leverages the contrastive loss function to enhance the robustness of classification models by training them with both clean and adversarially perturbed images. By optimizing the model's parameters alongside the perturbations, our approach enables the network to learn robust representations that are less susceptible to adversarial attacks. Experimental results show significant improvements in the model's robustness against various types of adversarial perturbations. This suggests that contrastive loss helps extract more informative and resilient features, contributing to the field of adversarial robustness in deep learning.
The rapid advancement of deep neural networks (DNNs) heavily relies on large-scale, high-quality datasets. However, unauthorized commercial use of these datasets severely violates the intellectual property rights of dataset owners. Existing backdoor-based dataset ownership verification methods suffer from inherent limitations: poison-label watermarks are easily detectable due to label inconsistencies, while clean-label watermarks face high technical complexity and failure on high-resolution images. Moreover, both approaches employ static watermark patterns that are vulnerable to detection and removal. To address these issues, this paper proposes a sample-specific clean-label backdoor watermarking (i.e., SSCL-BW). By training a U-Net-based watermarked sample generator, this method generates unique watermarks for each sample, fundamentally overcoming the vulnerability of static watermark patterns. The core innovation lies in designing a composite loss function with three components: target sample loss ensures watermark effectiveness, non-target sample loss guarantees trigger reliability, and perceptual similarity loss maintains visual imperceptibility. During ownership verification, black-box testing is employed to check whether suspicious models exhibit predefined backdoor behaviors. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed method and its robustness against potential watermark removal attacks.
The rapid evolution of generative adversarial networks (GANs) and diffusion models has made synthetic media increasingly realistic, raising societal concerns around misinformation, identity fraud, and digital trust. Existing deepfake detection methods either rely on deep learning, which suffers from poor generalization and vulnerability to distortions, or forensic analysis, which is interpretable but limited against new manipulation techniques. This study proposes a hybrid framework that fuses forensic features, including noise residuals, JPEG compression traces, and frequency-domain descriptors, with deep learning representations from convolutional neural networks (CNNs) and vision transformers (ViTs). Evaluated on benchmark datasets (FaceForensics++, Celeb-DF v2, DFDC), the proposed model consistently outperformed single-method baselines and demonstrated superior performance compared to existing state-of-the-art hybrid approaches, achieving F1-scores of 0.96, 0.82, and 0.77, respectively. Robustness tests demonstrated stable performance under compression (F1 = 0.87 at QF = 50), adversarial perturbations (AUC = 0.84), and unseen manipulations (F1 = 0.79). Importantly, explainability analysis showed that Grad-CAM and forensic heatmaps overlapped with ground-truth manipulated regions in 82 percent of cases, enhancing transparency and user trust. These findings confirm that hybrid approaches provide a balanced solution, combining the adaptability of deep models with the interpretability of forensic cues, to develop resilient and trustworthy deepfake detection systems.
Microsoft Copilot suites serve as the universal entry point for various agents skilled in handling important tasks, ranging from assisting a customer with product purchases to detecting vulnerabilities in corporate programming code. Each agent can be powered by language models, software engineering operations, such as database retrieval, and internal \& external knowledge. The repertoire of a copilot can expand dynamically with new agents. This requires a robust orchestrator that can distribute tasks from user prompts to the right agents. In this work, we propose an Agentic Meta-orchestrator (AMO) for handling multiple tasks and scalable agents in copilot services, which can provide both natural language and action responses. We will also demonstrate the planning that leverages meta-learning, i.e., a trained decision tree model for deciding the best inference strategy among various agents/models. We showcase the effectiveness of our AMO through two production use cases: Microsoft 365 (M365) E-Commerce Copilot and code compliance copilot. M365 E-Commerce Copilot advertises Microsoft products to external customers to promote sales success. The M365 E-Commerce Copilot provides up-to-date product information and connects to multiple agents, such as relational databases and human customer support. The code compliance copilot scans the internal DevOps code to detect known and new compliance issues in pull requests (PR).
Security applications are increasingly relying on large language models (LLMs) for cyber threat detection; however, their opaque reasoning often limits trust, particularly in decisions that require domain-specific cybersecurity knowledge. Because security threats evolve rapidly, LLMs must not only recall historical incidents but also adapt to emerging vulnerabilities and attack patterns. Retrieval-Augmented Generation (RAG) has demonstrated effectiveness in general LLM applications, but its potential for cybersecurity remains underexplored. In this work, we introduce a RAG-based framework designed to contextualize cybersecurity data and enhance LLM accuracy in knowledge retention and temporal reasoning. Using external datasets and the Llama-3-8B-Instruct model, we evaluate baseline RAG, an optimized hybrid retrieval approach, and conduct a comparative analysis across multiple performance metrics. Our findings highlight the promise of hybrid retrieval in strengthening the adaptability and reliability of LLMs for cybersecurity tasks.
Weakly Supervised Video Anomaly Detection (WSVAD) has achieved notable advancements, yet existing models remain vulnerable to adversarial attacks, limiting their reliability. Due to the inherent constraints of weak supervision, where only video-level labels are provided despite the need for frame-level predictions, traditional adversarial defense mechanisms, such as adversarial training, are not effective since video-level adversarial perturbations are typically weak and inadequate. To address this limitation, pseudo-labels generated directly from the model can enable frame-level adversarial training; however, these pseudo-labels are inherently noisy, significantly degrading performance. We therefore introduce a novel Pseudo-Anomaly Generation method called Spatiotemporal Region Distortion (SRD), which creates synthetic anomalies by applying severe augmentations to localized regions in normal videos while preserving temporal consistency. Integrating these precisely annotated synthetic anomalies with the noisy pseudo-labels substantially reduces label noise, enabling effective adversarial training. Extensive experiments demonstrate that our method significantly enhances the robustness of WSVAD models against adversarial attacks, outperforming state-of-the-art methods by an average of 71.0\% in overall AUROC performance across multiple benchmarks. The implementation and code are publicly available at https://github.com/rohban-lab/FrameShield.
As machine learning models are increasingly fine-tuned on synthetic data, there is a critical risk of subtle misalignments spreading through interconnected AI systems. This paper investigates subliminal corruption, which we define as undesirable traits are transmitted through semantically neutral data, bypassing standard safety checks. While this phenomenon has been identified, a quantitative understanding of its dynamics is missing. To address this gap, we present a systematic study of the scaling laws, thresholds, and mechanisms of subliminal corruption using a teacher-student setup with GPT-2. Our experiments reveal three key findings: (1) subliminal corruption causes behavioral crossover, degrading the model's overall alignment, not just the targeted trait; (2) alignment fails in a sharp phase transition at a critical threshold of poisoned data, rather than degrading gradually; and (3) interpretability analysis shows the corruption mechanism mimics the model's natural fine-tuning process, making it difficult to detect. These results demonstrate a critical vulnerability in AI systems that rely on synthetic data and highlight the need for new safety protocols that can account for latent threats.




With the goal of improving the security of Internet protocols, we seek faster, semi-automatic methods to discover new vulnerabilities in protocols such as DNS, BGP, and others. To this end, we introduce the LLM-Assisted Protocol Attack Discovery (LAPRAD) methodology, enabling security researchers with some DNS knowledge to efficiently uncover vulnerabilities that would otherwise be hard to detect. LAPRAD follows a three-stage process. In the first, we consult an LLM (GPT-o1) that has been trained on a broad corpus of DNS-related sources and previous DDoS attacks to identify potential exploits. In the second stage, a different LLM automatically constructs the corresponding attack configurations using the ReACT approach implemented via LangChain (DNS zone file generation). Finally, in the third stage, we validate the attack's functionality and effectiveness. Using LAPRAD, we uncovered three new DDoS attacks on the DNS protocol and rediscovered two recently reported ones that were not included in the LLM's training data. The first new attack employs a bait-and-switch technique to trick resolvers into caching large, bogus DNSSEC RRSIGs, reducing their serving capacity to as little as 6%. The second exploits large DNSSEC encryption algorithms (RSA-4096) with multiple keys, thereby bypassing a recently implemented default RRSet limit. The third leverages ANY-type responses to produce a similar effect. These variations of a cache-flushing DDoS attack, called SigCacheFlush, circumvent existing patches, severely degrade resolver query capacity, and impact the latest versions of major DNS resolver implementations.
Program analysis tools often produce large volumes of candidate vulnerability reports that require costly manual review, creating a practical challenge: how can security analysts prioritize the reports most likely to be true vulnerabilities? This paper investigates whether machine learning can be applied to prioritizing vulnerabilities reported by program analysis tools. We focus on Node.js packages and collect a benchmark of 1,883 Node.js packages, each containing one reported ACE or ACI vulnerability. We evaluate a variety of machine learning approaches, including classical models, graph neural networks (GNNs), large language models (LLMs), and hybrid models that combine GNN and LLMs, trained on data based on a dynamic program analysis tool's output. The top LLM achieves $F_{1} {=} 0.915$, while the best GNN and classical ML models reaching $F_{1} {=} 0.904$. At a less than 7% false-negative rate, the leading model eliminates 66.9% of benign packages from manual review, taking around 60 ms per package. If the best model is tuned to operate at a precision level of 0.8 (i.e., allowing 20% false positives amongst all warnings), our approach can detect 99.2% of exploitable taint flows while missing only 0.8%, demonstrating strong potential for real-world vulnerability triage.