Abstract:Weakly Supervised Video Anomaly Detection (WSVAD) has achieved notable advancements, yet existing models remain vulnerable to adversarial attacks, limiting their reliability. Due to the inherent constraints of weak supervision, where only video-level labels are provided despite the need for frame-level predictions, traditional adversarial defense mechanisms, such as adversarial training, are not effective since video-level adversarial perturbations are typically weak and inadequate. To address this limitation, pseudo-labels generated directly from the model can enable frame-level adversarial training; however, these pseudo-labels are inherently noisy, significantly degrading performance. We therefore introduce a novel Pseudo-Anomaly Generation method called Spatiotemporal Region Distortion (SRD), which creates synthetic anomalies by applying severe augmentations to localized regions in normal videos while preserving temporal consistency. Integrating these precisely annotated synthetic anomalies with the noisy pseudo-labels substantially reduces label noise, enabling effective adversarial training. Extensive experiments demonstrate that our method significantly enhances the robustness of WSVAD models against adversarial attacks, outperforming state-of-the-art methods by an average of 71.0\% in overall AUROC performance across multiple benchmarks. The implementation and code are publicly available at https://github.com/rohban-lab/FrameShield.
Abstract:The evaluation of vision-language models (VLMs) has mainly relied on English-language benchmarks, leaving significant gaps in both multilingual and multicultural coverage. While multilingual benchmarks have expanded, both in size and languages, many rely on translations of English datasets, failing to capture cultural nuances. In this work, we propose Kaleidoscope, as the most comprehensive exam benchmark to date for the multilingual evaluation of vision-language models. Kaleidoscope is a large-scale, in-language multimodal benchmark designed to evaluate VLMs across diverse languages and visual inputs. Kaleidoscope covers 18 languages and 14 different subjects, amounting to a total of 20,911 multiple-choice questions. Built through an open science collaboration with a diverse group of researchers worldwide, Kaleidoscope ensures linguistic and cultural authenticity. We evaluate top-performing multilingual vision-language models and find that they perform poorly on low-resource languages and in complex multimodal scenarios. Our results highlight the need for progress on culturally inclusive multimodal evaluation frameworks.




Abstract:The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (\ie, multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. Our novel resource, INCLUDE, is a comprehensive knowledge- and reasoning-centric benchmark across 44 written languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed.