Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Sep 10, 2024
Abstract:Recent advancements in multilingual speech encoding as well as transcription raise the question of the most effective approach to semantic speech classification. Concretely, can (1) end-to-end (E2E) classifiers obtained by fine-tuning state-of-the-art multilingual speech encoders (MSEs) match or surpass the performance of (2) cascading (CA), where speech is first transcribed into text and classification is delegated to a text-based classifier. To answer this, we first construct SpeechTaxi, an 80-hour multilingual dataset for semantic speech classification of Bible verses, covering 28 diverse languages. We then leverage SpeechTaxi to conduct a wide range of experiments comparing E2E and CA in monolingual semantic speech classification as well as in cross-lingual transfer. We find that E2E based on MSEs outperforms CA in monolingual setups, i.e., when trained on in-language data. However, MSEs seem to have poor cross-lingual transfer abilities, with E2E substantially lagging CA both in (1) zero-shot transfer to languages unseen in training and (2) multilingual training, i.e., joint training on multiple languages. Finally, we devise a novel CA approach based on transcription to Romanized text as a language-agnostic intermediate representation and show that it represents a robust solution for languages without native ASR support. Our SpeechTaxi dataset is publicly available at: https://huggingface.co/ datasets/LennartKeller/SpeechTaxi/.
Via
Sep 09, 2024
Abstract:Recent advances in language modelling has significantly decreased the need of labelled data in text classification tasks. Transformer-based models, pre-trained on unlabeled data, can outmatch the performance of models trained from scratch for each task. However, the amount of labelled data need to fine-tune such type of model is still considerably high for domains requiring expert-level annotators, like the legal domain. This paper investigates the best strategies for optimizing the use of a small labeled dataset and large amounts of unlabeled data and perform a classification task in the legal area with 50 predefined topics. More specifically, we use the records of demands to a Brazilian Public Prosecutor's Office aiming to assign the descriptions in one of the subjects, which currently demands deep legal knowledge for manual filling. The task of optimizing the performance of classifiers in this scenario is especially challenging, given the low amount of resources available regarding the Portuguese language, especially in the legal domain. Our results demonstrate that classic supervised models such as logistic regression and SVM and the ensembles random forest and gradient boosting achieve better performance along with embeddings extracted with word2vec when compared to BERT language model. The latter demonstrates superior performance in association with the architecture of the model itself as a classifier, having surpassed all previous models in that regard. The best result was obtained with Unsupervised Data Augmentation (UDA), which jointly uses BERT, data augmentation, and strategies of semi-supervised learning, with an accuracy of 80.7% in the aforementioned task.
Via
Sep 09, 2024
Abstract:Information Extraction (IE) and Text Classification (CLS) serve as the fundamental pillars of NLU, with both disciplines relying on analyzing input sequences to categorize outputs into pre-established schemas. However, there is no existing encoder-based model that can unify IE and CLS tasks from this perspective. To fully explore the foundation shared within NLU tasks, we have proposed a Recursive Method with Explicit Schema Instructor for Universal NLU. Specifically, we firstly redefine the true universal information extraction (UIE) with a formal formulation that covers almost all extraction schemas, including quadruples and quintuples which remain unsolved for previous UIE models. Then, we expands the formulation to all CLS and multi-modal NLU tasks. Based on that, we introduce RexUniNLU, an universal NLU solution that employs explicit schema constraints for IE and CLS, which encompasses all IE and CLS tasks and prevent incorrect connections between schema and input sequence. To avoid interference between different schemas, we reset the position ids and attention mask matrices. Extensive experiments are conducted on IE, CLS in both English and Chinese, and multi-modality, revealing the effectiveness and superiority. Our codes are publicly released.
* arXiv admin note: substantial text overlap with arXiv:2304.14770
Via
Sep 09, 2024
Abstract:As Large Language Models become more ubiquitous across domains, it becomes important to examine their inherent limitations critically. This work argues that hallucinations in language models are not just occasional errors but an inevitable feature of these systems. We demonstrate that hallucinations stem from the fundamental mathematical and logical structure of LLMs. It is, therefore, impossible to eliminate them through architectural improvements, dataset enhancements, or fact-checking mechanisms. Our analysis draws on computational theory and Godel's First Incompleteness Theorem, which references the undecidability of problems like the Halting, Emptiness, and Acceptance Problems. We demonstrate that every stage of the LLM process-from training data compilation to fact retrieval, intent classification, and text generation-will have a non-zero probability of producing hallucinations. This work introduces the concept of Structural Hallucination as an intrinsic nature of these systems. By establishing the mathematical certainty of hallucinations, we challenge the prevailing notion that they can be fully mitigated.
Via
Sep 10, 2024
Abstract:Diffusion Models (DMs) iteratively denoise random samples to produce high-quality data. The iterative sampling process is derived from Stochastic Differential Equations (SDEs), allowing a speed-quality trade-off chosen at inference. Another advantage of sampling with differential equations is exact likelihood computation. These likelihoods have been used to rank unconditional DMs and for out-of-domain classification. Despite the many existing and possible uses of DM likelihoods, the distinct properties captured are unknown, especially in conditional contexts such as Text-To-Image (TTI) or Text-To-Speech synthesis (TTS). Surprisingly, we find that TTS DM likelihoods are agnostic to the text input. TTI likelihood is more expressive but cannot discern confounding prompts. Our results show that applying DMs to conditional tasks reveals inconsistencies and strengthens claims that the properties of DM likelihood are unknown. This impact sheds light on the previously unknown nature of DM likelihoods. Although conditional DMs maximise likelihood, the likelihood in question is not as sensitive to the conditioning input as one expects. This investigation provides a new point-of-view on diffusion likelihoods.
Via
Sep 09, 2024
Abstract:Data attribution aims to quantify the contribution of individual training data points to the outputs of an AI model, which has been used to measure the value of training data and compensate data providers. Given the impact on financial decisions and compensation mechanisms, a critical question arises concerning the adversarial robustness of data attribution methods. However, there has been little to no systematic research addressing this issue. In this work, we aim to bridge this gap by detailing a threat model with clear assumptions about the adversary's goal and capabilities, and by proposing principled adversarial attack methods on data attribution. We present two such methods, Shadow Attack and Outlier Attack, both of which generate manipulated datasets to adversarially inflate the compensation. The Shadow Attack leverages knowledge about the data distribution in the AI applications, and derives adversarial perturbations through "shadow training", a technique commonly used in membership inference attacks. In contrast, the Outlier Attack does not assume any knowledge about the data distribution and relies solely on black-box queries to the target model's predictions. It exploits an inductive bias present in many data attribution methods - outlier data points are more likely to be influential - and employs adversarial examples to generate manipulated datasets. Empirically, in image classification and text generation tasks, the Shadow Attack can inflate the data-attribution-based compensation by at least 200%, while the Outlier Attack achieves compensation inflation ranging from 185% to as much as 643%.
Via
Sep 10, 2024
Abstract:The Audio Question Answering task includes audio event classification, audio captioning, and open ended reasoning. Recently, Audio Question Answering has garnered attention due to the advent of Large Audio Language Models. Current literature focuses on constructing LALMs by integrating audio encoders with text only Large Language Models through a projection module. While Large Audio Language Models excel in general audio understanding, they are limited in temporal reasoning which may hinder their commercial applications and on device deployment. This paper addresses these challenges and limitations in audio temporal reasoning. First, we introduce a data augmentation technique for generating reliable audio temporal questions and answers using an LLM. Second, we propose a continued finetuning curriculum learning strategy to specialize in temporal reasoning without compromising performance on finetuned tasks. Finally, we develop a reliable and transparent automated metric, assisted by an LLM, to measure the correlation between Large Audio Language Model responses and ground truth data intelligently. We demonstrate the effectiveness of our proposed techniques using SOTA LALMs on public audio benchmark datasets.
* 5 pages, 3 figures
Via
Sep 10, 2024
Abstract:Early detection of eye diseases like glaucoma, macular degeneration, and diabetic retinopathy is crucial for preventing vision loss. While artificial intelligence (AI) foundation models hold significant promise for addressing these challenges, existing ophthalmic foundation models primarily focus on a single modality, whereas diagnosing eye diseases requires multiple modalities. A critical yet often overlooked aspect is harnessing the multi-view information across various modalities for the same patient. Additionally, due to the long-tail nature of ophthalmic diseases, standard fully supervised or unsupervised learning approaches often struggle. Therefore, it is essential to integrate clinical text to capture a broader spectrum of diseases. We propose EyeCLIP, a visual-language foundation model developed using over 2.77 million multi-modal ophthalmology images with partial text data. To fully leverage the large multi-modal unlabeled and labeled data, we introduced a pretraining strategy that combines self-supervised reconstructions, multi-modal image contrastive learning, and image-text contrastive learning to learn a shared representation of multiple modalities. Through evaluation using 14 benchmark datasets, EyeCLIP can be transferred to a wide range of downstream tasks involving ocular and systemic diseases, achieving state-of-the-art performance in disease classification, visual question answering, and cross-modal retrieval. EyeCLIP represents a significant advancement over previous methods, especially showcasing few-shot, even zero-shot capabilities in real-world long-tail scenarios.
Via
Sep 09, 2024
Abstract:Large pre-trained models (LPMs) have demonstrated exceptional performance in diverse natural language processing and computer vision tasks. However, fully fine-tuning these models poses substantial memory challenges, particularly in resource-constrained environments. Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, mitigate this issue by adjusting only a small subset of parameters. Nevertheless, these methods typically employ random initialization for low-rank matrices, which can lead to inefficiencies in gradient descent and diminished generalizability due to suboptimal starting points. To address these limitations, we propose SVFit, a novel PEFT approach that leverages singular value decomposition (SVD) to initialize low-rank matrices using critical singular values as trainable parameters. Specifically, SVFit performs SVD on the pre-trained weight matrix to obtain the best rank-r approximation matrix, emphasizing the most critical singular values that capture over 99% of the matrix's information. These top-r singular values are then used as trainable parameters to scale the fundamental subspaces of the matrix, facilitating rapid domain adaptation. Extensive experiments across various pre-trained models in natural language understanding, text-to-image generation, and image classification tasks reveal that SVFit outperforms LoRA while requiring 16 times fewer trainable parameters.
Via
Sep 09, 2024
Abstract:Handwritten Text Generation (HTG) conditioned on text and style is a challenging task due to the variability of inter-user characteristics and the unlimited combinations of characters that form new words unseen during training. Diffusion Models have recently shown promising results in HTG but still remain under-explored. We present DiffusionPen (DiffPen), a 5-shot style handwritten text generation approach based on Latent Diffusion Models. By utilizing a hybrid style extractor that combines metric learning and classification, our approach manages to capture both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples. Moreover, we explore several variation strategies of the data with multi-style mixtures and noisy embeddings, enhancing the robustness and diversity of the generated data. Extensive experiments using IAM offline handwriting database show that our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems. The code is available at: https://github.com/koninik/DiffusionPen.
Via