Text classification is the process of categorizing text documents into predefined categories or labels.
MITRE ATT&CK is a cybersecurity knowledge base that organizes threat actor and cyber-attack information into a set of tactics describing the reasons and goals threat actors have for carrying out attacks, with each tactic having a set of techniques that describe the potential methods used in these attacks. One major application of ATT&CK is the use of its tactic and technique hierarchy by security specialists as a framework for annotating cyber-threat intelligence reports, vulnerability descriptions, threat scenarios, inter alia, to facilitate downstream analyses. To date, the tagging process is still largely done manually. In this technical note, we provide a stratified "task space" characterization of the MITRE ATT&CK text tagging task for organizing previous efforts toward automation using AIML methods, while also clarifying pathways for constructing new methods. To illustrate one of the pathways, we use the task space strata to stage-wise construct our own multi-label hierarchical classification models for the text tagging task via experimentation over general cyber-threat intelligence text -- using shareable computational tools and publicly releasing the models to the security community (via https://github.com/jpmorganchase/MITRE_models). Our multi-label hierarchical approach yields accuracy scores of roughly 94% at the tactic level, as well as accuracy scores of roughly 82% at the technique level. The models also meet or surpass state-of-the-art performance while relying only on classical machine learning methods -- removing any dependence on LLMs, RAG, agents, or more complex hierarchical approaches. Moreover, we show that GPT-4o model performance at the tactic level is significantly lower (roughly 60% accuracy) than our own approach. We also extend our baseline model to a corpus of threat scenarios for financial applications produced by subject matter experts.
This study investigates the feature representations produced by publicly available open source medical vision-language models (VLMs). While medical VLMs are expected to capture diagnostically relevant features, their learned representations remain underexplored, and standard evaluations like classification accuracy do not fully reveal if they acquire truly discriminative, lesion-specific features. Understanding these representations is crucial for revealing medical image structures and improving downstream tasks in medical image analysis. This study aims to investigate the feature distributions learned by medical VLMs and evaluate the impact of medical specialization. We analyze the feature distribution of multiple image modalities extracted by some representative medical VLMs across lesion classification datasets on multiple modalities. These distributions were compared them with non-medical VLMs to assess the domain-specific medical training. Our experiments showed that medical VLMs can extract discriminative features that are effective for medical classification tasks. Moreover, it was found that non-medical VLMs with recent improvement with contextual enrichment such as LLM2CLIP produce more refined feature representations. Our results imply that enhancing text encoder is more crucial than training intensively on medical images when developing medical VLMs. Notably, non-medical models are particularly vulnerable to biases introduced by overlaied text strings on images. These findings underscore the need for careful consideration on model selection according to downstream tasks besides potential risks in inference due to background biases such as textual information in images.
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.
Recognizing and navigating client resistance is critical for effective mental health counseling, yet detecting such behaviors is particularly challenging in text-based interactions. Existing NLP approaches oversimplify resistance categories, ignore the sequential dynamics of therapeutic interventions, and offer limited interpretability. To address these limitations, we propose PsyFIRE, a theoretically grounded framework capturing 13 fine-grained resistance behaviors alongside collaborative interactions. Based on PsyFIRE, we construct the ClientResistance corpus with 23,930 annotated utterances from real-world Chinese text-based counseling, each supported by context-specific rationales. Leveraging this dataset, we develop RECAP, a two-stage framework that detects resistance and fine-grained resistance types with explanations. RECAP achieves 91.25% F1 for distinguishing collaboration and resistance and 66.58% macro-F1 for fine-grained resistance categories classification, outperforming leading prompt-based LLM baselines by over 20 points. Applied to a separate counseling dataset and a pilot study with 62 counselors, RECAP reveals the prevalence of resistance, its negative impact on therapeutic relationships and demonstrates its potential to improve counselors' understanding and intervention strategies.
Whisper has become the de-facto encoder for extracting general-purpose audio features in large audio-language models, where a 30-second clip is typically represented by 1500 frame features projected into an LLM. In contrast, audio-text embedding models like CLAP-based models have largely relied on alternative audio encoders (e.g., HTS-AT, PaSST), and have not leveraged Whisper effectively. We present WavLink, a compact audio-text embedding model that augments Whisper encoder with a learnable global token, trained jointly with a text encoder. Through a systematic study of design choices, including pretrained text encoders, loss functions, training modes, and data mixtures, we identify configurations that yield state-of-the-art retrieval performance. Our two-stage training recipe across three model sizes, combined with Matryoshka-style supervision, improves scalability, enabling 8x smaller embeddings with minimal performance drop. WavLink also demonstrates competitive performance on AIR-Bench with MCQs and zero-shot classification.
Qualitative research often contains personal, contextual, and organizational details that pose privacy risks if not handled appropriately. Manual anonymization is time-consuming, inconsistent, and frequently omits critical identifiers. Existing automated tools tend to rely on pattern matching or fixed rules, which fail to capture context and may alter the meaning of the data. This study uses local LLMs to build a reliable, repeatable, and context-aware anonymization process for detecting and anonymizing sensitive data in qualitative transcripts. We introduce a Structured Framework for Adaptive Anonymizer (SFAA) that includes three steps: detection, classification, and adaptive anonymization. The SFAA incorporates four anonymization strategies: rule-based substitution, context-aware rewriting, generalization, and suppression. These strategies are applied based on the identifier type and the risk level. The identifiers handled by the SFAA are guided by major international privacy and research ethics standards, including the GDPR, HIPAA, and OECD guidelines. This study followed a dual-method evaluation that combined manual and LLM-assisted processing. Two case studies were used to support the evaluation. The first includes 82 face-to-face interviews on gamification in organizations. The second involves 93 machine-led interviews using an AI-powered interviewer to test LLM awareness and workplace privacy. Two local models, LLaMA and Phi were used to evaluate the performance of the proposed framework. The results indicate that the LLMs found more sensitive data than a human reviewer. Phi outperformed LLaMA in finding sensitive data, but made slightly more errors. Phi was able to find over 91% of the sensitive data and 94.8% kept the same sentiment as the original text, which means it was very accurate, hence, it does not affect the analysis of the qualitative data.
Interpretability is significant in computational pathology, leading to the development of multimodal information integration from histopathological image and corresponding text data.However, existing multimodal methods have limited interpretability due to the lack of high-quality dataset that support explicit reasoning and inference and simple reasoning process.To address the above problems, we introduce a novel multimodal pathology large language model with strong reasoning capabilities.To improve the generation of accurate and contextually relevant textual descriptions, we design a semantic reward strategy integrated with group relative policy optimization.We construct a high-quality pathology visual question answering (VQA) dataset, specifically designed to support complex reasoning tasks.Comprehensive experiments conducted on this dataset demonstrate that our method outperforms state-of-the-art methods, even when trained with only 20% of the data.Our method also achieves comparable performance on downstream zero-shot image classification task compared with CLIP.
Feature extraction from unstructured text is a critical step in many downstream classification pipelines, yet current approaches largely rely on hand-crafted prompts or fixed feature schemas. We formulate feature discovery as a dataset-level prompt optimization problem: given a labelled text corpus, the goal is to induce a global set of interpretable and discriminative feature definitions whose realizations optimize a downstream supervised learning objective. To this end, we propose a multi-agent prompt optimization framework in which language-model agents jointly propose feature definitions, extract feature values, and evaluate feature quality using dataset-level performance and interpretability feedback. Instruction prompts are iteratively refined based on this structured feedback, enabling optimization over prompts that induce shared feature sets rather than per-example predictions. This formulation departs from prior prompt optimization methods that rely on per-sample supervision and provides a principled mechanism for automatic feature discovery from unstructured text.
Open-set learning and discovery (OSLD) is a challenging machine learning task in which samples from new (unknown) classes can appear at test time. It can be seen as a generalization of zero-shot learning, where the new classes are not known a priori, hence involving the active discovery of new classes. While zero-shot learning has been extensively studied in text classification, especially with the emergence of pre-trained language models, open-set learning and discovery is a comparatively new setup for the text domain. To this end, we introduce the first multilingual open-set learning and discovery (MOSLD) benchmark for text categorization by topic, comprising 960K data samples across 12 languages. To construct the benchmark, we (i) rearrange existing datasets and (ii) collect new data samples from the news domain. Moreover, we propose a novel framework for the OSLD task, which integrates multiple stages to continuously discover and learn new classes. We evaluate several language models, including our own, to obtain results that can be used as reference for future work. We release our benchmark at https://github.com/Adriana19Valentina/MOSLD-Bench.
Joint audio-text models are widely used for music retrieval, yet they struggle with semantic phenomena such as negation. Negation is fundamental for distinguishing the absence (or presence) of musical elements (e.g., "with vocals" vs. "without vocals"), but current systems fail to represent this reliably. In this work, we investigate and mitigate this limitation by training CLAP models from scratch on the Million Song Dataset with LP-MusicCaps-MSD captions. We introduce negation through text augmentation and a dissimilarity-based contrastive loss, designed to explicitly separate original and negated captions in the joint embedding space. To evaluate progress, we propose two protocols that frame negation modeling as retrieval and binary classification tasks. Experiments demonstrate that both methods, individually and combined, improve negation handling while largely preserving retrieval performance.