Spoken dialogues with and between voice agents are becoming increasingly common, yet assessing them for their socially harmful content such as violence, harassment, and hate remains text-centric and fails to account for audio-specific cues and transcription errors. We present LALM-as-a-Judge, the first controlled benchmark and systematic study of large audio-language models (LALMs) as safety judges for multi-turn spoken dialogues. We generate 24,000 unsafe and synthetic spoken dialogues in English that consist of 3-10 turns, by having a single dialogue turn including content with one of 8 harmful categories (e.g., violence) and on one of 5 grades, from very mild to severe. On 160 dialogues, 5 human raters confirmed reliable unsafe detection and a meaningful severity scale. We benchmark three open-source LALMs: Qwen2-Audio, Audio Flamingo 3, and MERaLiON as zero-shot judges that output a scalar safety score in [0,1] across audio-only, transcription-only, or multimodal inputs, along with a transcription-only LLaMA baseline. We measure the judges' sensitivity to detecting unsafe content, the specificity in ordering severity levels, and the stability of the score in dialogue turns. Results reveal architecture- and modality-dependent trade-offs: the most sensitive judge is also the least stable across turns, while stable configurations sacrifice detection of mild harmful content. Transcription quality is a key bottleneck: Whisper-Large may significantly reduce sensitivity for transcription-only modes, while largely preserving severity ordering. Audio becomes crucial when paralinguistic cues or transcription fidelity are category-critical. We summarize all findings and provide actionable guidance for practitioners.
This paper documents our efforts in releasing the printed and audio book of the translation of the famous novel The Little Prince into the Chakavian dialect, as a computer-readable, AI-ready dataset, with the textual and the audio components of the two releases now aligned on the level of each written and spoken word. Our motivation for working on this release is multiple. The first one is our wish to preserve the highly valuable and specific content beyond the small editions of the printed and the audio book. With the dataset published in the CLARIN.SI repository, this content is from now on at the fingertips of any interested individual. The second motivation is to make the data available for various artificial-intelligence-related usage scenarios, such as the one we follow upon inside this paper already -- adapting the Whisper-large-v3 open automatic speech recognition model, with decent performance on standard Croatian, to Chakavian dialectal speech. We can happily report that with adapting the model, the word error rate on the selected test data has being reduced to a half, while we managed to remove up to two thirds of the error on character level. We envision many more usages of this dataset beyond the set of experiments we have already performed, both on tasks of artificial intelligence research and application, as well as dialectal research. The third motivation for this release is our hope that this, now highly structured dataset, will be transformed into a digital online edition of this work, allowing individuals beyond the research and technology communities to enjoy the beauty of the message of the little boy in the desert, told through the spectacular prism of the Chakavian dialect.
We introduce Speech-to-Spatial, a referent disambiguation framework that converts verbal remote-assistance instructions into spatially grounded AR guidance. Unlike prior systems that rely on additional cues (e.g., gesture, gaze) or manual expert annotations, Speech-to-Spatial infers the intended target solely from spoken references (speech input). Motivated by our formative study of speech referencing patterns, we characterize recurring ways people specify targets (Direct Attribute, Relational, Remembrance, and Chained) and ground them to our object-centric relational graph. Given an utterance, referent cues are parsed and rendered as persistent in-situ AR visual guidance, reducing iterative micro-guidance ("a bit more to the right", "now, stop.") during remote guidance. We demonstrate the use cases of our system with remote guided assistance and intent disambiguation scenarios. Our evaluation shows that Speechto-Spatial improves task efficiency, reduces cognitive load, and enhances usability compared to a conventional voice-only baseline, transforming disembodied verbal instruction into visually explainable, actionable guidance on a live shared view.
This work presents EmoAra, an end-to-end emotion-preserving pipeline for cross-lingual spoken communication, motivated by banking customer service where emotional context affects service quality. EmoAra integrates Speech Emotion Recognition, Automatic Speech Recognition, Machine Translation, and Text-to-Speech to process English speech and deliver an Arabic spoken output while retaining emotional nuance. The system uses a CNN-based emotion classifier, Whisper for English transcription, a fine-tuned MarianMT model for English-to-Arabic translation, and MMS-TTS-Ara for Arabic speech synthesis. Experiments report an F1-score of 94% for emotion classification, translation performance of BLEU 56 and BERTScore F1 88.7%, and an average human evaluation score of 81% on banking-domain translations. The implementation and resources are available at the accompanying GitHub repository.
Spoken question-answering (SQA) systems relying on automatic speech recognition (ASR) often struggle with accurately recognizing medical terminology. To this end, we propose MedSpeak, a novel knowledge graph-aided ASR error correction framework that refines noisy transcripts and improves downstream answer prediction by leveraging both semantic relationships and phonetic information encoded in a medical knowledge graph, together with the reasoning power of LLMs. Comprehensive experimental results on benchmarks demonstrate that MedSpeak significantly improves the accuracy of medical term recognition and overall medical SQA performance, establishing MedSpeak as a state-of-the-art solution for medical SQA. The code is available at https://github.com/RainieLLM/MedSpeak.
Reasoning-focused Question Answering (QA) has advanced rapidly with Large Language Models (LLMs), yet high-quality benchmarks for low-resource languages remain scarce. Persian, spoken by roughly 130 million people, lacks a comprehensive open-domain resource for evaluating reasoning-capable QA systems. We introduce PARSE, the first open-domain Persian reasoning QA benchmark, containing 10,800 questions across Boolean, multiple-choice, and factoid formats, with diverse reasoning types, difficulty levels, and answer structures. The benchmark is built via a controlled LLM-based generation pipeline and validated through human evaluation. We also ensure linguistic and factual quality through multi-stage filtering, annotation, and consistency checks. We benchmark multilingual and Persian LLMs under multiple prompting strategies and show that Persian prompts and structured prompting (CoT for Boolean/multiple-choice; few-shot for factoid) improve performance. Fine-tuning further boosts results, especially for Persian-specialized models. These findings highlight how PARSE supports both fair comparison and practical model adaptation. PARSE fills a critical gap in Persian QA research and provides a strong foundation for developing and evaluating reasoning-capable LLMs in low-resource settings.
A good language model starts with a good tokenizer. Tokenization is especially important for speech modeling, which must handle continuous signals that mix linguistic and non-linguistic information. A speech tokenizer should extract phonetics and prosody, suppress linguistically irrelevant information like speaker identity, and enable high-quality synthesis. We present Kanade, a single-layer disentangled speech tokenizer that realizes this ideal. Kanade separates out acoustic constants to create a single stream of tokens that captures rich phonetics and prosody. It does so without the need for auxiliary methods that existing disentangled codecs often rely on. Experiments show that Kanade achieves state-of-the-art speaker disentanglement and lexical availability, while maintaining excellent reconstruction quality.
Imperceptible text-based speech editing allows users to modify spoken content by altering the transcript. It demands that modified segments fuse seamlessly with the surrounding context. Prevalent methods operating in the acoustic space suffer from inherent content-style entanglement, leading to generation instability and boundary artifacts. In this paper, we propose a novel framework grounded in the principle of "Edit Content, Preserve Acoustics". Our approach relies on two core components: (1) Structural Foundations, which decouples editing into a stable semantic space while delegating acoustic reconstruction to a Flow Matching decoder; and (2) Perceptual Alignment, which employs a novel Self-Consistency Rewards Group Relative Policy Optimization. By leveraging a pre-trained Text-to-Speech model as an implicit critic -- complemented by strict intelligibility and duration constraints -- we effectively align the edited semantic token sequence with the original context. Empirical evaluations demonstrate that our method significantly outperforms state-of-the-art autoregressive and non-autoregressive baselines, achieving superior intelligibility, robustness, and perceptual quality.
Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.