Honda Research Institute Japan Co., Ltd., Saitama, Japan
Abstract:Sign Language Translation (SLT) aims to convert sign language (SL) videos into spoken language text, thereby bridging the communication gap between the sign and the spoken community. While most existing works focus on translating a single sign language into a single spoken language (one-to-one SLT), leveraging multilingual resources could mitigate low-resource issues and enhance accessibility. However, multilingual SLT (MLSLT) remains unexplored due to language conflicts and alignment difficulties across SLs and spoken languages. To address these challenges, we propose a multilingual gloss-free model with dual CTC objectives for token-level SL identification and spoken text generation. Our model supports 10 SLs and handles one-to-one, many-to-one, and many-to-many SLT tasks, achieving competitive performance compared to state-of-the-art methods on three widely adopted benchmarks: multilingual SP-10, PHOENIX14T, and CSL-Daily.
Abstract:This paper aims to achieve single-channel target speech extraction (TSE) in enclosures utilizing distance clues and room information. Recent works have verified the feasibility of distance clues for the TSE task, which can imply the sound source's direct-to-reverberation ratio (DRR) and thus can be utilized for speech separation and TSE systems. However, such distance clue is significantly influenced by the room's acoustic characteristics, such as dimension and reverberation time, making it challenging for TSE systems that rely solely on distance clues to generalize across a variety of different rooms. To solve this, we suggest providing room environmental information (room dimensions and reverberation time) for distance-based TSE for better generalization capabilities. Especially, we propose a distance and environment-based TSE model in the time-frequency (TF) domain with learnable distance and room embedding. Results on both simulated and real collected datasets demonstrate its feasibility. Demonstration materials are available at https://runwushi.github.io/distance-room-demo-page/.
Abstract:Robot audition, encompassing Sound Source Localization (SSL), Sound Source Separation (SSS), and Automatic Speech Recognition (ASR), enables robots and smart devices to acquire auditory capabilities similar to human hearing. Despite their wide applicability, processing multi-channel audio signals from microphone arrays in SSL involves computationally intensive matrix operations, which can hinder efficient deployment on Central Processing Units (CPUs), particularly in embedded systems with limited CPU resources. This paper introduces a GPU-based implementation of SSL for robot audition, utilizing the Generalized Singular Value Decomposition-based Multiple Signal Classification (GSVD-MUSIC), a noise-robust algorithm, within the HARK platform, an open-source software suite. For a 60-channel microphone array, the proposed implementation achieves significant performance improvements. On the Jetson AGX Orin, an embedded device powered by an NVIDIA GPU and ARM Cortex-A78AE v8.2 64-bit CPUs, we observe speedups of 4645.1x for GSVD calculations and 8.8x for the SSL module, while speedups of 2223.4x for GSVD calculation and 8.95x for the entire SSL module on a server configured with an NVIDIA A100 GPU and AMD EPYC 7352 CPUs, making real-time processing feasible for large-scale microphone arrays and providing ample capacity for real-time processing of potential subsequent machine learning or deep learning tasks.
Abstract:This paper addresses the extraction of the bird vocalization embedding from the whole song level using disentangled representation learning (DRL). Bird vocalization embeddings are necessary for large-scale bioacoustic tasks, and self-supervised methods such as Variational Autoencoder (VAE) have shown their performance in extracting such low-dimensional embeddings from vocalization segments on the note or syllable level. To extend the processing level to the entire song instead of cutting into segments, this paper regards each vocalization as the generalized and discriminative part and uses two encoders to learn these two parts. The proposed method is evaluated on the Great Tits dataset according to the clustering performance, and the results outperform the compared pre-trained models and vanilla VAE. Finally, this paper analyzes the informative part of the embedding, further compresses its dimension, and explains the disentangled performance of bird vocalizations.
Abstract:This paper aims to achieve single-channel target speech extraction (TSE) in enclosures by solely utilizing distance information. This is the first work that utilizes only distance cues without using speaker physiological information for single-channel TSE. Inspired by recent single-channel Distance-based separation and extraction methods, we introduce a novel model that efficiently fuses distance information with time-frequency (TF) bins for TSE. Experimental results in both single-room and multi-room scenarios demonstrate the feasibility and effectiveness of our approach. This method can also be employed to estimate the distances of different speakers in mixed speech. Online demos are available at https://runwushi.github.io/distance-demo-page.
Abstract:Current sign language translation (SLT) approaches often rely on gloss-based supervision with Connectionist Temporal Classification (CTC), limiting their ability to handle non-monotonic alignments between sign language video and spoken text. In this work, we propose a novel method combining joint CTC/Attention and transfer learning. The joint CTC/Attention introduces hierarchical encoding and integrates CTC with the attention mechanism during decoding, effectively managing both monotonic and non-monotonic alignments. Meanwhile, transfer learning helps bridge the modality gap between vision and language in SLT. Experimental results on two widely adopted benchmarks, RWTH-PHOENIX-Weather 2014 T and CSL-Daily, show that our method achieves results comparable to state-of-the-art and outperforms the pure-attention baseline. Additionally, this work opens a new door for future research into gloss-free SLT using text-based CTC alignment.
Abstract:Unmanned aerial vehicles (UAVs) have revolutionized search and rescue (SAR) operations, but the lack of specialized human detection datasets for training machine learning models poses a significant challenge.To address this gap, this paper introduces the Combination to Application (C2A) dataset, synthesized by overlaying human poses onto UAV-captured disaster scenes. Through extensive experimentation with state-of-the-art detection models, we demonstrate that models fine-tuned on the C2A dataset exhibit substantial performance improvements compared to those pre-trained on generic aerial datasets. Furthermore, we highlight the importance of combining the C2A dataset with general human datasets to achieve optimal performance and generalization across various scenarios. This points out the crucial need for a tailored dataset to enhance the effectiveness of SAR operations. Our contributions also include developing dataset creation pipeline and integrating diverse human poses and disaster scenes information to assess the severity of disaster scenarios. Our findings advocate for future developments, to ensure that SAR operations benefit from the most realistic and effective AI-assisted interventions possible.
Abstract:This study investigates mask-based beamformers (BFs), which estimate filters for target sound extraction (TSE) using time-frequency masks. Although multiple mask-based BFs have been proposed, no consensus has been established on the best one for target-extracting performance. Previously, we found that maximum signal-to-noise ratio and minimum mean square error (MSE) BFs can achieve the same extraction performance as the theoretical upper-bound performance, with each BF containing a different optimal mask. However, these remarkable findings left two issues unsolved: only two BFs were covered, excluding the minimum variance distortionless response BF; and ideal scaling (IS) was employed to ideally adjust the output scale, which is not applicable to realistic scenarios. To address these coverage and scaling issues, this study proposes a unified framework for mask-based BFs comprising two processes: filter estimation that can cover all BFs and scaling applicable to realistic scenarios by employing a mask to generate a scaling reference. We also propose a methodology to enumerate all possible BFs and derive 12 variations. Optimal masks for both processes are obtained by minimizing the MSE between the target and BF output. The experimental results using the CHiME-4 dataset suggested that 1) all 12 variations can achieve the theoretical upper-bound performance, and 2) mask-based scaling can behave as IS. These results can be explained by considering the practical parameter count of the masks. These findings contribute to 1) designing a TSE system, 2) estimating the extraction performance of a BF, and 3) improving scaling accuracy combined with mask-based scaling. The contributions also apply to TSE methods based on independent component analysis, as the unified framework covers them too.
Abstract:Robot audition systems with multiple microphone arrays have many applications in practice. However, accurate calibration of multiple microphone arrays remains challenging because there are many unknown parameters to be identified, including the relative transforms (i.e., orientation, translation) and asynchronous factors (i.e., initial time offset and sampling clock difference) between microphone arrays. To tackle these challenges, in this paper, we adopt batch simultaneous localization and mapping (SLAM) for joint calibration of multiple asynchronous microphone arrays and sound source localization. Using the Fisher information matrix (FIM) approach, we first conduct the observability analysis (i.e., parameter identifiability) of the above-mentioned calibration problem and establish necessary/sufficient conditions under which the FIM and the Jacobian matrix have full column rank, which implies the identifiability of the unknown parameters. We also discover several scenarios where the unknown parameters are not uniquely identifiable. Subsequently, we propose an effective framework to initialize the unknown parameters, which is used as the initial guess in batch SLAM for multiple microphone arrays calibration, aiming to further enhance optimization accuracy and convergence. Extensive numerical simulations and real experiments have been conducted to verify the performance of the proposed method. The experiment results show that the proposed pipeline achieves higher accuracy with fast convergence in comparison to methods that use the noise-corrupted ground truth of the unknown parameters as the initial guess in the optimization and other existing frameworks.
Abstract:The demand for accurate object detection in aerial imagery has surged with the widespread use of drones and satellite technology. Traditional object detection models, trained on datasets biased towards large objects, struggle to perform optimally in aerial scenarios where small, densely clustered objects are prevalent. To address this challenge, we present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture. We employ a range of datasets, including VisDrone-2023, SeaDroneSee, VEDAI, and NWPU VHR-10, to evaluate our model's performance. Our Super Resolved YOLOv5 architecture features Transformer encoder blocks, allowing the model to capture global context and context information, leading to improved detection results, especially in high-density, occluded conditions. This lightweight model not only delivers improved accuracy but also ensures efficient resource utilization, making it well-suited for real-time applications. Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects, underlining the significance of dataset choice and architectural adaptation for this specific task. In particular, the method achieves 52.5% mAP on VisDrone, exceeding top prior works. This approach promises to significantly advance object detection in aerial imagery, contributing to more accurate and reliable results in a variety of real-world applications.