Copper nanoparticles (Cu NPs) have a broad applicability, yet their synthesis is sensitive to subtle changes in reaction parameters. This sensitivity, combined with the time- and resource-intensive nature of experimental optimization, poses a major challenge in achieving reproducible and size-controlled synthesis. While Machine Learning (ML) shows promise in materials research, its application is often limited by scarcity of large high-quality experimental data sets. This study explores ML to predict the size of Cu NPs from microwave-assisted polyol synthesis using a small data set of 25 in-house performed syntheses. Latin Hypercube Sampling is used to efficiently cover the parameter space while creating the experimental data set. Ensemble regression models, built with the AMADEUS framework, successfully predict particle sizes with high accuracy ($R^2 = 0.74$), outperforming classical statistical approaches ($R^2 = 0.60$). Overall, this study highlights that, for lab-scale synthesis optimization, high-quality small datasets combined with classical, interpretable ML models outperform traditional statistical methods and are fully sufficient for quantitative synthesis prediction. This approach provides a sustainable and experimentally realistic pathway toward data-driven inorganic synthesis design.
This paper documents a data set of UK rain radar image sequences for use in statistical modeling and machine learning methods for nowcasting. The main dataset contains 1,000 randomly sampled sequences of length 20 steps (15-minute increments) of 2D radar intensity fields of dimension 40x40 (at 5km spatial resolution). Spatially stratified sampling ensures spatial homogeneity despite removal of clear-sky cases by threshold-based truncation. For each radar sequence, additional atmospheric and geographic features are made available, including date, location, mean elevation, mean wind direction and speed and prevailing storm type. New R functions to extract data from the binary "Nimrod" radar data format are provided. A case study is presented to train and evaluate a simple convolutional neural network for radar nowcasting, including self-contained R code.
Respiratory sounds captured via auscultation contain critical clues for diagnosing pulmonary conditions. Automated classification of these sounds faces challenges due to subtle acoustic differences and severe class imbalance in clinical datasets. This study investigates respiratory sound classification with a focus on mitigating pronounced class imbalance. We propose a hybrid deep learning model that combines a Long Short-Term Memory (LSTM) network for sequential feature encoding with a Kolmogorov-Arnold Network (KAN) for classification. The model is integrated with a comprehensive feature extraction pipeline and targeted imbalance mitigation strategies. Experiments were conducted on a public respiratory sound database comprising six classes with a highly skewed distribution. Techniques such as focal loss, class-specific data augmentation, and Synthetic Minority Over-sampling Technique (SMOTE) were employed to enhance minority class recognition. The proposed Hybrid LSTM-KAN model achieves an overall accuracy of 94.6 percent and a macro-averaged F1 score of 0.703, despite the dominant COPD class accounting for over 86 percent of the data. Improved detection performance is observed for minority classes compared to baseline approaches, demonstrating the effectiveness of the proposed architecture for imbalanced respiratory sound classification.
A large number of children experience preventable developmental delays each year, yet the deployment of machine learning in new countries has been stymied by a data bottleneck: reliable models require thousands of samples, while new programs begin with fewer than 100. We introduce the first pre-trained encoder for global child development, trained on 357,709 children across 44 countries using UNICEF survey data. With only 50 training samples, the pre-trained encoder achieves an average AUC of 0.65 (95% CI: 0.56-0.72), outperforming cold-start gradient boosting at 0.61 by 8-12% across regions. At N=500, the encoder achieves an AUC of 0.73. Zero-shot deployment to unseen countries achieves AUCs up to 0.84. We apply a transfer learning bound to explain why pre-training diversity enables few-shot generalization. These results establish that pre-trained encoders can transform the feasibility of ML for SDG 4.2.1 monitoring in resource-constrained settings.
Automated Essay Scoring (AES) plays a crucial role in education by providing scalable and efficient assessment tools. However, in real-world settings, the extreme scarcity of labeled data severely limits the development and practical adoption of robust AES systems. This study proposes a novel approach to enhance AES performance in both limited-data and full-data settings by introducing three key techniques. First, we introduce a Two-Stage fine-tuning strategy that leverages low-rank adaptations to better adapt an AES model to target prompt essays. Second, we introduce a Score Alignment technique to improve consistency between predicted and true score distributions. Third, we employ uncertainty-aware self-training using unlabeled data, effectively expanding the training set with pseudo-labeled samples while mitigating label noise propagation. We implement above three key techniques on DualBERT. We conduct extensive experiments on the ASAP++ dataset. As a result, in the 32-data setting, all three key techniques improve performance, and their integration achieves 91.2% of the full-data performance trained on approximately 1,000 labeled samples. In addition, the proposed Score Alignment technique consistently improves performance in both limited-data and full-data settings: e.g., it achieves state-of-the-art results in the full-data setting when integrated into DualBERT.
Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of qualitative possible values, the nested granular cluster effect is prevalent in the implicit discrete distance space of categorical data. That is, data objects frequently overlap in space or subspace to form small compact clusters, and similar small clusters often form larger clusters. However, the distance space cannot be well-defined like the Euclidean distance due to the qualitative categorical data values, which brings great challenges to the cluster analysis of categorical data. In view of this, we design a Multi-Granular Competitive Penalization Learning (MGCPL) algorithm to allow potential clusters to interactively tune themselves and converge in stages with different numbers of naturally compact clusters. To leverage MGCPL, we also propose a Cluster Aggregation strategy based on MGCPL Encoding (CAME) to first encode the data objects according to the learned multi-granular distributions, and then perform final clustering on the embeddings. It turns out that the proposed MGCPL-guided Categorical Data Clustering (MCDC) approach is competent in automatically exploring the nested distribution of multi-granular clusters and highly robust to categorical data sets from various domains. Benefiting from its linear time complexity, MCDC is scalable to large-scale data sets and promising in pre-partitioning data sets or compute nodes for boosting distributed computing. Extensive experiments with statistical evidence demonstrate its superiority compared to state-of-the-art counterparts on various real public data sets.
Outlier detection aims to find samples that behave differently from the majority of the data. Semi-supervised detection methods can utilize the supervision of partial labels, thus reducing false positive rates. However, most of the current semi-supervised methods focus on numerical data and neglect the heterogeneity of data information. In this paper, we propose a consistency-guided outlier detection algorithm (COD) for heterogeneous data with the fuzzy rough set theory in a semi-supervised manner. First, a few labeled outliers are leveraged to construct label-informed fuzzy similarity relations. Next, the consistency of the fuzzy decision system is introduced to evaluate attributes' contributions to knowledge classification. Subsequently, we define the outlier factor based on the fuzzy similarity class and predict outliers by integrating the classification consistency and the outlier factor. The proposed algorithm is extensively evaluated on 15 freshly proposed datasets. Experimental results demonstrate that COD is better than or comparable with the leading outlier detectors. This manuscript is the accepted author version of a paper published by Elsevier. The final published version is available at https://doi.org/10.1016/j.asoc.2024.112070
We explore a situation in which the target domain is accessible, but real-time data annotation is not feasible. Instead, we would like to construct an alternative training set from a large-scale data server so that a competitive model can be obtained. For this problem, because the target domain usually exhibits distinct modes (i.e., semantic clusters representing data distribution), if the training set does not contain these target modes, the model performance would be compromised. While prior existing works improve algorithms iteratively, our research explores the often-overlooked potential of optimizing the structure of the data server. Inspired by the hierarchical nature of web search engines, we introduce a hierarchical data server, together with a bipartite mode matching algorithm (BMM) to align source and target modes. For each target mode, we look in the server data tree for the best mode match, which might be large or small in size. Through bipartite matching, we aim for all target modes to be optimally matched with source modes in a one-on-one fashion. Compared with existing training set search algorithms, we show that the matched server modes constitute training sets that have consistently smaller domain gaps with the target domain across object re-identification (re-ID) and detection tasks. Consequently, models trained on our searched training sets have higher accuracy than those trained otherwise. BMM allows data-centric unsupervised domain adaptation (UDA) orthogonal to existing model-centric UDA methods. By combining the BMM with existing UDA methods like pseudo-labeling, further improvement is observed.
With the increasing flexibilization of processes, determining robust scheduling decisions has become an important goal. Traditionally, the flexibility index has been used to identify safe operating schedules by approximating the admissible uncertainty region using simple admissible uncertainty sets, such as hypercubes. Presently, available contextual information, such as forecasts, has not been considered to define the admissible uncertainty set when determining the flexibility index. We propose the conditional flexibility index (CFI), which extends the traditional flexibility index in two ways: by learning the parametrized admissible uncertainty set from historical data and by using contextual information to make the admissible uncertainty set conditional. This is achieved using a normalizing flow that learns a bijective mapping from a Gaussian base distribution to the data distribution. The admissible latent uncertainty set is constructed as a hypersphere in the latent space and mapped to the data space. By incorporating contextual information, the CFI provides a more informative estimate of flexibility by defining admissible uncertainty sets in regions that are more likely to be relevant under given conditions. Using an illustrative example, we show that no general statement can be made about data-driven admissible uncertainty sets outperforming simple sets, or conditional sets outperforming unconditional ones. However, both data-driven and conditional admissible uncertainty sets ensure that only regions of the uncertain parameter space containing realizations are considered. We apply the CFI to a security-constrained unit commitment example and demonstrate that the CFI can improve scheduling quality by incorporating temporal information.
Transfer effects manifest themselves both during training using a fixed data set and in inductive inference using accumulating data. We hypothesize that perturbing the data set by including more samples, instead of perturbing the model by gradient updates, provides a complementary and more fundamental characterization of transfer effects. To capture this phenomenon, we quantitatively model transfer effects using multi-task learning curves approximating the inductive performance over varying sample sizes. We describe an efficient method to approximate multi-task learning curves analogous to the Task Affinity Grouping method applied during training. We compare the statistical and computational approaches to transfer, which indicates considerably higher compute costs for the previous but better power and broader applicability. Evaluations are performed using a benchmark drug-target interaction data set. Our results show that learning curves can better capture the effects of multi-task learning and their multi-task extensions can delineate pairwise and contextual transfer effects in foundation models.