Abstract:Federated Learning (FL) that extracts data knowledge while protecting the privacy of multiple clients has achieved remarkable results in distributed privacy-preserving IoT systems, including smart traffic flow monitoring, smart grid load balancing, and so on. Since most data collected from edge devices are unlabeled, unsupervised Federated Clustering (FC) is becoming increasingly popular for exploring pattern knowledge from complex distributed data. However, due to the lack of label guidance, the common Non-Independent and Identically Distributed (Non-IID) issue of clients have greatly challenged FC by posing the following problems: How to fuse pattern knowledge (i.e., cluster distribution) from Non-IID clients; How are the cluster distributions among clients related; and How does this relationship connect with the global knowledge fusion? In this paper, a more tricky but overlooked phenomenon in Non-IID is revealed, which bottlenecks the clustering performance of the existing FC approaches. That is, different clients could fragment a cluster, and accordingly, a more generalized Non-IID concept, i.e., Non-ICD (Non-Independent Completely Distributed), is derived. To tackle the above FC challenges, a new framework named GOLD (Global Oriented Local Distribution Learning) is proposed. GOLD first finely explores the potential incomplete local cluster distributions of clients, then uploads the distribution summarization to the server for global fusion, and finally performs local cluster enhancement under the guidance of the global distribution. Extensive experiments, including significance tests, ablation studies, scalability evaluations, qualitative results, etc., have been conducted to show the superiority of GOLD.
Abstract:Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of qualitative possible values, the nested granular cluster effect is prevalent in the implicit discrete distance space of categorical data. That is, data objects frequently overlap in space or subspace to form small compact clusters, and similar small clusters often form larger clusters. However, the distance space cannot be well-defined like the Euclidean distance due to the qualitative categorical data values, which brings great challenges to the cluster analysis of categorical data. In view of this, we design a Multi-Granular Competitive Penalization Learning (MGCPL) algorithm to allow potential clusters to interactively tune themselves and converge in stages with different numbers of naturally compact clusters. To leverage MGCPL, we also propose a Cluster Aggregation strategy based on MGCPL Encoding (CAME) to first encode the data objects according to the learned multi-granular distributions, and then perform final clustering on the embeddings. It turns out that the proposed MGCPL-guided Categorical Data Clustering (MCDC) approach is competent in automatically exploring the nested distribution of multi-granular clusters and highly robust to categorical data sets from various domains. Benefiting from its linear time complexity, MCDC is scalable to large-scale data sets and promising in pre-partitioning data sets or compute nodes for boosting distributed computing. Extensive experiments with statistical evidence demonstrate its superiority compared to state-of-the-art counterparts on various real public data sets.
Abstract:Driven by the growth of Web-scale decentralized services, Federated Clustering (FC) aims to extract knowledge from heterogeneous clients in an unsupervised manner while preserving the clients' privacy, which has emerged as a significant challenge due to the lack of label guidance and the Non-Independent and Identically Distributed (non-IID) nature of clients. In real scenarios such as personalized recommendation and cross-device user profiling, the global cluster may be fragmented and distributed among different clients, and the clusters may exist at different granularities or even nested. Although Hierarchical Clustering (HC) is considered promising for exploring such distributions, the sophisticated recursive clustering process makes it more computationally expensive and vulnerable to privacy exposure, thus relatively unexplored under the federated learning scenario. This paper introduces an efficient one-shot hierarchical FC framework that performs client-end distribution exploration and server-end distribution aggregation through one-way prototype-level communication from clients to the server. A fine partition mechanism is developed to generate successive clusterlets to describe the complex landscape of the clients' clusters. Then, a multi-granular learning mechanism on the server is proposed to fuse the clusterlets, even when they have inconsistent granularities generated from different clients. It turns out that the complex cluster distributions across clients can be efficiently explored, and extensive experiments comparing state-of-the-art methods on ten public datasets demonstrate the superiority of the proposed method.