Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
Both fine-grained discriminative details and global semantic features can contribute to solving person re-identification challenges, such as occlusion and pose variations. Vision foundation models (\textit{e.g.}, DINO) excel at mining local textures, and vision-language models (\textit{e.g.}, CLIP) capture strong global semantic difference. Existing methods predominantly rely on a single paradigm, neglecting the potential benefits of their integration. In this paper, we analyze the complementary roles of these two architectures and propose a framework to synergize their strengths by a \textbf{D}ual-\textbf{R}egularized Bidirectional \textbf{Transformer} (\textbf{DRFormer}). The dual-regularization mechanism ensures diverse feature extraction and achieves a better balance in the contributions of the two models. Extensive experiments on five benchmarks show that our method effectively harmonizes local and global representations, achieving competitive performance against state-of-the-art methods.
Aerial-ground person re-identification (AG-ReID) is fundamentally challenged by extreme viewpoint and distance discrepancies between aerial and ground cameras, which induce severe geometric distortions and invalidate the assumption of a shared similarity space across views. Existing methods primarily rely on geometry-aware feature learning or appearance-conditioned prompting, while implicitly assuming that the geometry-invariant dot-product similarity used in attention mechanisms remains reliable under large viewpoint and scale variations. We argue that this assumption does not hold. Extreme camera geometry systematically distorts the query-key similarity space and degrades attention-based matching, even when feature representations are partially aligned. To address this issue, we introduce Geometry-Induced Query-Key Transformation (GIQT), a lightweight low-rank module that explicitly rectifies the similarity space by conditioning query-key interactions on camera geometry. Rather than modifying feature representations or the attention formulation itself, GIQT adapts the similarity computation to compensate for dominant geometry-induced anisotropic distortions. Building on this local similarity rectification, we further incorporate a geometry-conditioned prompt generation mechanism that provides global, view-adaptive representation priors derived directly from camera geometry. Experiments on four aerial-ground person re-identification benchmarks demonstrate that the proposed framework consistently improves robustness under extreme and previously unseen geometric conditions, while introducing minimal computational overhead compared to state-of-the-art methods.
Person Re-Identification (ReID) remains a challenging problem in computer vision. This work reviews various training paradigm and evaluates the robustness of state-of-the-art ReID models in cross-domain applications and examines the role of foundation models in improving generalization through richer, more transferable visual representations. We compare three training paradigms, supervised, self-supervised, and language-aligned models. Through the study the aim is to answer the following questions: Can supervised models generalize in cross-domain scenarios? How does foundation models like SigLIP2 perform for the ReID tasks? What are the weaknesses of current supervised and foundational models for ReID? We have conducted the analysis across 11 models and 9 datasets. Our results show a clear split: supervised models dominate their training domain but crumble on cross-domain data. Language-aligned models, however, show surprising robustness cross-domain for ReID tasks, even though they are not explicitly trained to do so. Code and data available at: https://github.com/moiiai-tech/object-reid-benchmark.
Unlike conventional person re-identification (ReID), clothes-changing ReID (CC-ReID) presents severe challenges due to substantial appearance variations introduced by clothing changes. In this work, we propose the Quality-Aware Dual-Branch Matching (QA-ReID), which jointly leverages RGB-based features and parsing-based representations to model both global appearance and clothing-invariant structural cues. These heterogeneous features are adaptively fused through a multi-modal attention module. At the matching stage, we further design the Quality-Aware Query Adaptive Convolution (QAConv-QA), which incorporates pixel-level importance weighting and bidirectional consistency constraints to enhance robustness against clothing variations. Extensive experiments demonstrate that QA-ReID achieves state-of-the-art performance on multiple benchmarks, including PRCC, LTCC, and VC-Clothes, and significantly outperforms existing approaches under cross-clothing scenarios.
In skeleton-based human activity understanding, existing methods often adopt the contrastive learning paradigm to construct a discriminative feature space. However, many of these approaches fail to exploit the structural inter-class similarities and overlook the impact of anomalous positive samples. In this study, we introduce ACLNet, an Affinity Contrastive Learning Network that explores the intricate clustering relationships among human activity classes to improve feature discrimination. Specifically, we propose an affinity metric to refine similarity measurements, thereby forming activity superclasses that provide more informative contrastive signals. A dynamic temperature schedule is also introduced to adaptively adjust the penalty strength for various superclasses. In addition, we employ a margin-based contrastive strategy to improve the separation of hard positive and negative samples within classes. Extensive experiments on NTU RGB+D 60, NTU RGB+D 120, Kinetics-Skeleton, PKU-MMD, FineGYM, and CASIA-B demonstrate the superiority of our method in skeleton-based action recognition, gait recognition, and person re-identification. The source code is available at https://github.com/firework8/ACLNet.
We introduce a method for decentralized person re-identification in robot swarms that leverages natural language as the primary representational modality. Unlike traditional approaches that rely on opaque visual embeddings -- high-dimensional feature vectors extracted from images -- the proposed method uses human-readable language to represent observations. Each robot locally detects and describes individuals using a vision-language model (VLM), producing textual descriptions of appearance instead of feature vectors. These descriptions are compared and clustered across the swarm without centralized coordination, allowing robots to collaboratively group observations of the same individual. Each cluster is distilled into a representative description by a language model, providing an interpretable, concise summary of the swarm's collective perception. This approach enables natural-language querying, enhances transparency, and supports explainable swarm behavior. Preliminary experiments demonstrate competitive performance in identity consistency and interpretability compared to embedding-based methods, despite current limitations in text similarity and computational load. Ongoing work explores refined similarity metrics, semantic navigation, and the extension of language-based perception to environmental elements. This work prioritizes decentralized perception and communication, while active navigation remains an open direction for future study.
Instance-level recognition (ILR) concerns distinguishing individual instances from one another, with person re-identification as a prominent example. Despite the impressive visual perception capabilities of modern VLMs, we find their performance on ILR unsatisfactory, often dramatically underperforming domain-specific ILR models. This limitation hinders many practical application of VLMs, e.g. where recognizing familiar people and objects is crucial for effective visual understanding. Existing solutions typically learn to recognize instances one at a time using instance-specific datasets, which not only incur substantial data collection and training costs but also struggle with fine-grained discrimination. In this work, we propose IIR-VLM, a VLM enhanced for In-context Instance-level Recognition. We integrate pre-trained ILR expert models as auxiliary visual encoders to provide specialized features for learning diverse instances, which enables VLMs to learn new instances in-context in a one-shot manner. Further, IIR-VLM leverages this knowledge for instance-aware visual understanding. We validate IIR-VLM's efficacy on existing instance personalization benchmarks. Finally, we demonstrate its superior ILR performance on a challenging new benchmark, which assesses ILR capabilities across varying difficulty and diverse categories, with person, face, pet and general objects as the instances at task.
The core of video-based visible-infrared person re-identification (VVI-ReID) lies in learning sequence-level modal-invariant representations across different modalities. Recent research tends to use modality-shared language prompts generated by CLIP to guide the learning of modal-invariant representations. Despite achieving optimal performance, such methods still face limitations in efficient spatial-temporal modeling, sufficient cross-modal interaction, and explicit modality-level loss guidance. To address these issues, we propose the language-driven sequence-level modal-invariant representation learning (LSMRL) method, which includes spatial-temporal feature learning (STFL) module, semantic diffusion (SD) module and cross-modal interaction (CMI) module. To enable parameter- and computation-efficient spatial-temporal modeling, the STFL module is built upon CLIP with minimal modifications. To achieve sufficient cross-modal interaction and enhance the learning of modal-invariant features, the SD module is proposed to diffuse modality-shared language prompts into visible and infrared features to establish preliminary modal consistency. The CMI module is further developed to leverage bidirectional cross-modal self-attention to eliminate residual modality gaps and refine modal-invariant representations. To explicitly enhance the learning of modal-invariant representations, two modality-level losses are introduced to improve the features' discriminative ability and their generalization to unseen categories. Extensive experiments on large-scale VVI-ReID datasets demonstrate the superiority of LSMRL over AOTA methods.
We propose unsupervised multi-scenario (UMS) person re-identification (ReID) as a new task that expands ReID across diverse scenarios (cross-resolution, clothing change, etc.) within a single coherent framework. To tackle UMS-ReID, we introduce image-text knowledge modeling (ITKM) -- a three-stage framework that effectively exploits the representational power of vision-language models. We start with a pre-trained CLIP model with an image encoder and a text encoder. In Stage I, we introduce a scenario embedding in the image encoder and fine-tune the encoder to adaptively leverage knowledge from multiple scenarios. In Stage II, we optimize a set of learned text embeddings to associate with pseudo-labels from Stage I and introduce a multi-scenario separation loss to increase the divergence between inter-scenario text representations. In Stage III, we first introduce cluster-level and instance-level heterogeneous matching modules to obtain reliable heterogeneous positive pairs (e.g., a visible image and an infrared image of the same person) within each scenario. Next, we propose a dynamic text representation update strategy to maintain consistency between text and image supervision signals. Experimental results across multiple scenarios demonstrate the superiority and generalizability of ITKM; it not only outperforms existing scenario-specific methods but also enhances overall performance by integrating knowledge from multiple scenarios.