Rechargeable lithium-ion (Li-ion) batteries are a ubiquitous element of modern technology. In the last decades, the production and design of such batteries and their adjacent embedded charging and safety protocols, denoted by Battery Management Systems (BMS), has taken central stage. A fundamental challenge to be addressed is the trade-off between the speed of charging and the ageing behavior, resulting in the loss of capacity in the battery cell. We rely on a high-fidelity physics-based battery model and propose an approach to data-driven charging and safety protocol design. Following a Counterexample-Guided Inductive Synthesis scheme, we combine Reinforcement Learning (RL) with recent developments in data-driven formal methods to obtain a hybrid control strategy: RL is used to synthesise the individual controllers, and a data-driven abstraction guides their partitioning into a switched structure, depending on the initial output measurements of the battery. The resulting discrete selection among RL-based controllers, coupled with the continuous battery dynamics, realises a hybrid system. When a design meets the desired criteria, the abstraction provides probabilistic guarantees on the closed-loop performance of the cell.
This paper considers the problem of resistance estimation in electronic systems including battery management systems (BMS) and battery chargers. In typical applications, the battery resistance is obtained through an approximate method computed as the ratio of the voltage difference to the applied current excitation pulse or vice versa for admittance. When estimating the battery resistance, this approach ignores the change in the open circuit voltage (OCV) as a result of the excitation signal. In this paper, we formally demonstrate and quantify the effect of the OCV drop on the errors in internal resistance estimation. Then, we propose a novel method to accurately estimate the internal resistance by accounting for the change in OCV caused by the applied current excitation signal. The proposed approach is based on a novel observation model that allows one to estimate the effect of OCV without requiring any additional information, such as the state of charge (SOC), parameters of the OCV-SOC curve, and the battery capacity. As such, the proposed approach is independent of the battery chemistry, size, age, and the ambient temperature. A performance analysis of the proposed approach using the battery simulator shows significant performance gain in the range of 30% to more than 250% in percentage estimation error. Then, the proposed approach is applied for resistance estimation during the hybrid pulse power characterization (HPPC) of cylindrical Li-ion battery cells. Results from tested batteries show that the proposed approach reduced the overestimated internal resistance of the batteries by up to 20 m{\Omega}.




This paper presents a comprehensive review of AI-driven prognostics for State of Health (SoH) prediction in lithium-ion batteries. We compare the effectiveness of various AI algorithms, including FFNN, LSTM, and BiLSTM, across multiple datasets (CALCE, NASA, UDDS) and scenarios (e.g., varying temperatures and driving conditions). Additionally, we analyze the factors influencing SoH fluctuations, such as temperature and charge-discharge rates, and validate our findings through simulations. The results demonstrate that BiLSTM achieves the highest accuracy, with an average RMSE reduction of 15% compared to LSTM, highlighting its robustness in real-world applications.
Accurately identifying the parameters of electrochemical models of li-ion battery (LiB) cells is a critical task for enhancing the fidelity and predictive ability. Traditional parameter identification methods often require extensive data collection experiments and lack adaptability in dynamic environments. This paper describes a Reinforcement Learning (RL) based approach that dynamically tailors the current profile applied to a LiB cell to optimize the parameters identifiability of the electrochemical model. The proposed framework is implemented in real-time using a Hardware-in-the-Loop (HIL) setup, which serves as a reliable testbed for evaluating the RL-based design strategy. The HIL validation confirms that the RL-based experimental design outperforms conventional test protocols used for parameter identification in terms of both reducing the modeling errors on a verification test and minimizing the duration of the experiment used for parameter identification.
Battery degradation is a major challenge in electric vehicles (EV) and energy storage systems (ESS). However, most degradation investigations focus mainly on estimating the state of charge (SOC), which fails to accurately interpret the cells' internal degradation mechanisms. Differential capacity analysis (DCA) focuses on the rate of change of cell voltage about the change in cell capacity, under various charge/discharge rates. This paper developed a battery cell degradation testing model that used two types of lithium-ions (Li-ion) battery cells, namely lithium nickel cobalt aluminium oxides (LiNiCoAlO2) and lithium iron phosphate (LiFePO4), to evaluate internal degradation during loading conditions. The proposed battery degradation model contains distinct charge rates (DCR) of 0.2C, 0.5C, 1C, and 1.5C, as well as discharge rates (DDR) of 0.5C, 0.9C, 1.3C, and 1.6C to analyze the internal health and performance of battery cells during slow, moderate, and fast loading conditions. Besides, this research proposed a model that incorporates the Extended Kalman Filter (EKF), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) networks to validate experimental data. The proposed model yields excellent modelling results based on mean squared error (MSE), and root mean squared error (RMSE), with errors of less than 0.001% at DCR and DDR. The peak identification technique (PIM) has been utilized to investigate battery health based on the number of peaks, peak position, peak height, peak area, and peak width. At last, the PIM method has discovered that the cell aged gradually under normal loading rates but deteriorated rapidly under fast loading conditions. Overall, LiFePO4 batteries perform more robustly and consistently than (LiNiCoAlO2) cells under varying loading conditions.




The accurate prediction of RUL for lithium-ion batteries is crucial for enhancing the reliability and longevity of energy storage systems. Traditional methods for RUL prediction often struggle with issues such as data sparsity, varying battery chemistries, and the inability to capture complex degradation patterns over time. In this study, we propose a survival analysis-based framework combined with deep learning models to predict the RUL of lithium-ion batteries. Specifically, we utilize five advanced models: the Cox-type models (Cox, CoxPH, and CoxTime) and two machine-learning-based models (DeepHit and MTLR). These models address the challenges of accurate RUL estimation by transforming raw time-series battery data into survival data, including key degradation indicators such as voltage, current, and internal resistance. Advanced feature extraction techniques enhance the model's robustness in diverse real-world scenarios, including varying charging conditions and battery chemistries. Our models are tested using 10-fold cross-validation, ensuring generalizability and minimizing overfitting. Experimental results show that our survival-based framework significantly improves RUL prediction accuracy compared to traditional methods, providing a reliable tool for battery management and maintenance optimization. This study contributes to the advancement of predictive maintenance in battery technology, offering valuable insights for both researchers and industry practitioners aiming to enhance the operational lifespan of lithium-ion batteries.
Prognostic and Health Management (PHM) are crucial ways to avoid unnecessary maintenance for Cyber-Physical Systems (CPS) and improve system reliability. Predicting the Remaining Useful Life (RUL) is one of the most challenging tasks for PHM. Existing methods require prior knowledge about the system, contrived assumptions, or temporal mining to model the life cycles of machine equipment/devices, resulting in diminished accuracy and limited applicability in real-world scenarios. This paper proposes a Bi-directional Adversarial network with Covariate Encoding for machine Remaining Useful Life (BACE-RUL) prediction, which only adopts sensor measurements from the current life cycle to predict RUL rather than relying on previous consecutive cycle recordings. The current sensor measurements of mechanical devices are encoded to a conditional space to better understand the implicit inner mechanical status. The predictor is trained as a conditional generative network with the encoded sensor measurements as its conditions. Various experiments on several real-world datasets, including the turbofan aircraft engine dataset and the dataset collected from degradation experiments of Li-Ion battery cells, show that the proposed model is a general framework and outperforms state-of-the-art methods.




Estimating the evolution of the battery's State of Charge (SoC) in response to its usage is critical for implementing effective power management policies and for ultimately improving the system's lifetime. Most existing estimation methods are either physics-based digital twins of the battery or data-driven models such as Neural Networks (NNs). In this work, we propose two new contributions in this domain. First, we introduce a novel NN architecture formed by two cascaded branches: one to predict the current SoC based on sensor readings, and one to estimate the SoC at a future time as a function of the load behavior. Second, we integrate battery dynamics equations into the training of our NN, merging the physics-based and data-driven approaches, to improve the models' generalization over variable prediction horizons. We validate our approach on two publicly accessible datasets, showing that our Physics-Informed Neural Networks (PINNs) outperform purely data-driven ones while also obtaining superior prediction accuracy with a smaller architecture with respect to the state-of-the-art.
Accurate modeling of lithium ion (li-ion) batteries is essential for enhancing the safety, and efficiency of electric vehicles and renewable energy systems. This paper presents a data-inspired approach for improving the fidelity of reduced-order li-ion battery models. The proposed method combines a Genetic Algorithm with Sequentially Thresholded Ridge Regression (GA-STRidge) to identify and compensate for discrepancies between a low-fidelity model (LFM) and data generated either from testing or a high-fidelity model (HFM). The hybrid model, combining physics-based and data-driven methods, is tested across different driving cycles to demonstrate the ability to significantly reduce the voltage prediction error compared to the baseline LFM, while preserving computational efficiency. The model robustness is also evaluated under various operating conditions, showing low prediction errors and high Pearson correlation coefficients for terminal voltage in unseen environments.




The state of health (SOH) of a Li-ion battery is a critical parameter that determines the remaining capacity and the remaining lifetime of the battery. In this paper, we propose SambaMixer a novel structured state space model (SSM) for predicting the state of health of Li-ion batteries. The proposed SSM is based on the MambaMixer architecture, which is designed to handle multi-variate time signals. We evaluate our model on the NASA battery discharge dataset and show that our model outperforms the state-of-the-art on this dataset. We further introduce a novel anchor-based resampling method which ensures time signals are of the expected length while also serving as augmentation technique. Finally, we condition prediction on the sample time and the cycle time difference using positional encodings to improve the performance of our model and to learn recuperation effects. Our results proof that our model is able to predict the SOH of Li-ion batteries with high accuracy and robustness.